Product Description
Company Profile
ZheZheJiang nshine Industrial Technology Co., Ltd., as a professional overseas sales team and sales service team, is committed to providing customers with piston compressor and diaphragm compressor solutions. The company adheres to the concept of one-stop service and provides customers with a complete set of air compressor equipment solutions.
Product Description
Our products mainly include 2 series: piston compressors and diaphragm compressors, covering more than 30 types of products. These products are widely used in fields such as hydrogen energy, semiconductors, chemicals, petrochemicals, and natural gas transportation. We have over 3000 industrial enterprise users, covering all aspects of the hydrogen energy industry chain, including hydrogen production, filling, and hydrogen refueling station compressors, and providing a complete set of gas compression equipment solutions. As an efficient, energy-saving, environmentally friendly, and reliable compressor type, diaphragm compressors have also achieved great success and have been widely used in various fields.
Product Description:
Piston compressors are a type of positive displacement compressor that are commonly used in the chemical industry for a variety of applications. These compressors work by using a piston and cylinder to compress gas or air, which creates pressure and allows it to be transported through pipelines or used in other processes.
Diaphragm compressor :according to the needs of the user, choose the right type of compressor to meet the needs of the user. The diaphragm of the metal diaphragm compressor completely separates the gas from the hydraulic oil system to ensure the purity of the gas and no pollution to the gas. At the same time, advanced manufacturing technology and accurate membrane cavity design technology are adopted to ensure the service life of the diaphragm compressor diaphragm. No pollution: the metal diaphragm group completely separates the process gas from the hydraulic oil and lubricating oil parts to ensure the gas purity.Our compressors can compress ammonia, propylene, nitrogen, oxygen, helium, hydrogen, hydrogen chloride, argon, hydrogen chloride, hydrogen sulfide, hydrogen bromide, ethylene, acetylene, etc. (Nitrogen diaphragm compressor, bottle filling compressor, oxygen diaphragm compressor)and especially fit for all kinds of toxic radioactive corrosive compressor
In the chemical industry, piston compressors are used for a variety of functions, including:
Gas compression – Piston compressors are used to compress natural gas, hydrogen, and other gases used in chemical processes. product-list-1.html product-list-1.html
Pneumatic conveying – Piston compressors are used to transport materials in a powdered or granular form through pipelines.
Refrigeration – Piston compressors are used in refrigeration systems to compress refrigerant gases, which are then used to cool industrial processes and equipment.
Process air compression – Piston compressors are used to compress air for use in chemical processes, such as in pneumatic equipment and air-powered tools.
Piston compressors are popular in the chemical industry because they are reliable, efficient, and can handle specific types of gases and air with ease. Additionally, they require minimal maintenance and can operate at high pressures, making them suitable for many applications
When choosing a piston compressor for use in the chemical industry, it is important to consider factors such as:
Type of gas or air being compressed – Different types of gases and air require different types of compression.
Required flow rate and pressure – The capacity and pressure capabilities of the compressor must meet the requirements of the application.
Environmental conditions – Factors such as temperature, humidity, and altitude can affect the performance of the compressor.
Maintenance requirements – The frequency and complexity of maintenance and servicing should be considered when selecting a compressor.
Overall, piston compressors are an important tool in the chemical industry, providing reliable and efficient compression for a variety of applications. Choosing the right compressor for the specific application is critical to ensuring optimal performance and efficiency.
Piston compressor model:
1. Single-stage piston compressor
Single-stage piston compressor is the simplest compressor, mainly composed of cylinder, piston, crankshaft, connecting rod, valve and other components. It has the advantages of simple structure, easy maintenance and low price, so it is widely used in low-pressure air compression, nitrogen and oxygen production and other occasions. Parameters such as air output volume, air outlet pressure, and rotational speed need to be considered when selecting models.
Common models include: W-1.8/5, W-3.6/5, W-4/5, W-6/5, etc.
2. Two-stage piston compressor
A two-stage piston compressor consists of 2 compressors. The first-stage compressor compresses the gas to a higher intermediate pressure, and then is cooled by the cooler and sent to the second-stage compressor to compress it again to the final pressure. Compared with single-stage piston compressors, two-stage piston compressors have higher outlet pressure, higher efficiency, and wider application range.
Common models include: W-1/3-2/3, W-2.5/5-2.5/5, W-3/6-3.6/6, etc.
3. High-pressure piston compressor
High-pressure piston compressors are mainly used to compress high-pressure gases, such as natural gas, hydrogen, helium, etc. It has a complex structure and needs to be equipped with auxiliary equipment such as gas coolers, gas inlet filters, pressure controllers, etc. It also has the advantages of high outlet pressure, low energy consumption, and smooth operation.
Common models include: W-3/20, W-6/30, W-9/30, etc.
Introduction to the meaning of the model number of diaphragm compressor:
For example: 1G3V-300/4-15 AND GV3-310/22-62
1G3V-300/4-15 each represents as follows:
“1” means double first-class product;
“G” indicates diaphragm compressor;
“3” indicates the 3rd series of the product manufacturer’s diaphragm compressor series, and does not indicate piston force; the larger the number, the greater the piston force.
“V” means V-shaped structure.
“3V” means there are main and auxiliary connecting rods, and the crankcase is split.
“300” indicates the amount of gas the compressor handles per hour under standard conditions;
“4” means the inlet pressure is 4kg/cm2 (ie 0.4MPa);
“15” means the exhaust pressure is 15kg/cm2 (ie 1.5MPa).
GV3-310/22-62 each represents as follows:
“G” indicates diaphragm compressor;
“V” means V-shaped structure.
“3” indicates the 3rd series of the product manufacturer’s diaphragm compressor series, and does not indicate piston force; the larger the number, the greater the piston force.
“V3” is another series, indicating a side-by-side structure of connecting rods and a one-piece crankcase.
Basic information:Piston compressor model parameters:
Piston compressor model parameters | |||||||||
Piston force | 800 | 500 | 320 | 250 | 160 | 100 | 65 | 45 | 30 |
Types of compressed gas | Hydrogen, nitrogen, natural gas, ethylene, propylene, coal gas, hydrogen chloride, hydrogen fluoride, carbon dioxide, methyl chloride, carbon monoxide, acetylene ammonia, hydrogen monochloride, difluoromethane, tetrafluoroethylene, pentafluoroethylene, hexafluoroethylene, etc. | ||||||||
discharge pressureMPa(G) | <=25 | <=30 | |||||||
Compression levels | 1-4levels | 2-6levels | 1-3levels | ||||||
Number of columns | 2–4 | 2–6 | 1–4 | ||||||
Layout form/Type/Model | M/D | M/D | M/D | M/D | M/D | M/D/P | M/D/P | M/D/P | L/P |
route(mm) | 280-360 | 240-320 | 180-240 | 200 | |||||
Rotating speed(rpm) | 300-375 | 333-450 | 375-585 | 420-485 | |||||
Maximum motor power(KW) | 5600 | 3600 | 3300 | 2700 | 1250 | 800 | 560 | 250 | 75 |
skid mounted | non-skid mounted | skid mounted/non -skid mounted | |||||||
Digital Analog Computing | yes | ||||||||
systolic algorithm | yes | ||||||||
test | According to the quality standard, chemical analysis, mechanical performance, flaw detection, hydrostatic test, airtight test and other inspections are carried out for each component | ||||||||
Factory inspection | According to the quality standard, carry out no-load mechanical operation test | ||||||||
Customer acceptance | Actual working conditions, 72-hour assessment and acceptance | ||||||||
Application | Hydrogen energy, silicon, fluorine chemical industry, petrochemical industry, metallurgy, medicine, aerospace, nuclear power |
Basic information:Diaphragm compressor model parameters
Piston force | 250 | 160 | 110 | 80 | 60 | 45 | 35 | 45 | 10 |
Types of compressed gas | Hydrogen, nitrogen, oxygen, helium, xenon, hydrogen chloride, hydrogen sulfide, nitrogen trifluoride, silicon tetrafluoride, silane | ||||||||
Discharge pressureMPa(G) | <=100 | ||||||||
Compression levels | 1-3levels | ||||||||
Layout form/Type/Model | M/D | D/L | D/L/Z | V/Z | L/Z | L/Z | |||
Route(mm) | 210 | 210/1/0 | 180 | 180 | 150 | 130 | 130 | 105 | 70 |
Rotating speed(rpm) | 260 | 360-420 | |||||||
Maximum motor power(KW) | 355 | 250 | 200 | 160 | 110 | 55 | 30 | 22 | 18.5 |
Skid mounted | skid mounted | ||||||||
Digital Analog Computing | yes | ||||||||
Systolic algorithm | According to demand | ||||||||
Test | According to the quality standard, chemical analysis, mechanical performance, flaw detection, hydrostatic test, airtight test and other inspections are carried out for each component | ||||||||
Factory inspection | Carry out nitrogen or air full-load mechanical operation test according to quality requirements | ||||||||
Customer acceptance | Actual working conditions, 72-hour assessment and acceptance | ||||||||
Application | Hydrogen energy, silicon, fluorine chemical industry, petrochemical industry, metallurgy, medicine, aerospace, nuclear power |
Basic information:hydrogen compressor model parameters
Hydrogen gas production compressor | |||||
parameter industry | hydrogen from natural gas | Hydrogen from coke oven gas | Chemical tail gas recovery | Fluorine alkali tail gas recovery | other |
Suction pressure MPa(G) | 0-0.5 | 0-0.2 | 0-1.0 | 0-0.1 | |
Discharge pressureMPa(G) | 1.0-3.0 | 0.8-2.3 | 1.5-3.0 | 0.8-2.5 | |
Capacity Nm3/min | 5-50 | 10-200 | 10-200 | 8-100 | |
Compression levels | 1-3 | 1-4 | 1-6 | 1-5 | 1-6 |
Motor power(KW) | 30-2000 | ||||
Skid mounted | skid mounted | ||||
Digital Analog Computing | yes | ||||
Systolic algorithm | yes | ||||
Service Guarantee | Professional service team, 7X24 hours all day service | ||||
Hydrogen filling compressor + hydrogen refueling station compressor | |||||
parameter industry | 45Mpahydrogen refueling station | 90Mpa hydrogen refueling station | Hydrogen tank truck | Hydrogen flushed into the bottle | High pressure hydrogen delivery |
Suction pressure MPa(G) | 3-20 | 10-30 | 0.8-3.0 | 0.1-30 | 0.8-3.0 |
Discharge pressureMPa(G) | 45 | 90 | 20.0-22.20 | 15.0-20.0 | 5.2-20.0 |
Capacity Nm3/min | 200-2000 | 100-1000 | 300-2000 | 10-800 | 100-1500 |
Compression levels | 1-2 | 1-2 | 1-3 | 1-2 | 1-2 |
Motor power(KW) | 30-200 | 30-185 | 75-315 | 3-160 | 22-200 |
Skid mounted | skid mounted | ||||
Digital Analog Computing | yes | ||||
Finite Element Analysis | yes | ||||
Service Guarantee | Professional service team, 7X24 hours all day service | ||||
Detailed Photos
After Sales Service
We have an independent service operation and maintenance team, providing customers with various support and services, including technical support, debugging services, spare parts supply, renovation and upgrading, and major maintenance. We always adhere to the principle of customer-centrism, ensuring the safe and stable operation of customer equipment. Our service team is committed to providing reliable support for customers’ operations 24/7.
Training plan
1)Company training
Before the unit is delivered, that is during the unit assembly period, users will be provided with a one-week on-site training by the company. Provide local accommodation and transportation facilities, and provide free venues, teaching materials, equipment, tools, etc. required for training. The company training content is as follows:
The working principle, structure and technical performance of the unit.
Unit assembly and adjustment, unit testing.
Operation of the unit, remote/local operation, manual/automatic operation, daily operation and management, familiar with the structure of each system of the unit.
Routine maintenance and upkeep of the unit, and precautions for operation and maintenance.
Analysis and troubleshooting of common faults, and emergency handling methods.
2) On-site training
During the installation and trial operation of the unit, on-site training will be conducted to teach the principles, structure, operation, maintenance, troubleshooting of common faults and other knowledge of the unit, so as to further become familiar with the various systems of the unit, so that the purchaser can independently and correctly operate the unit. Operation, maintenance and management.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 12 Month |
---|---|
Warranty: | 12 Month |
Lubrication Style: | Lubricated |
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
What Is the Typical Lifespan of a Gas Air Compressor?
The typical lifespan of a gas air compressor can vary depending on several factors, including the quality of the compressor, its usage patterns, maintenance practices, and environmental conditions. However, with proper care and maintenance, a gas air compressor can last for many years. Here’s a detailed explanation of the factors that can affect the lifespan of a gas air compressor:
1. Quality of the Compressor:
The quality and construction of the gas air compressor play a significant role in determining its lifespan. Compressors made with high-quality materials, precision engineering, and robust components are generally more durable and can withstand heavy usage over an extended period.
2. Usage Patterns:
The usage patterns of the gas air compressor can impact its lifespan. If the compressor is used consistently and for extended periods, it may experience more wear and tear compared to compressors used intermittently or for lighter tasks. Heavy-duty applications, such as continuous operation with high-demand tools, can put more strain on the compressor and potentially reduce its lifespan.
3. Maintenance Practices:
Regular maintenance is crucial for extending the lifespan of a gas air compressor. Following the manufacturer’s recommended maintenance schedule, performing routine tasks like oil changes, filter cleaning/replacement, and inspection of components can help prevent issues and ensure optimal performance. Neglecting maintenance can lead to accelerated wear and potential breakdowns.
4. Environmental Conditions:
The operating environment can significantly impact the lifespan of a gas air compressor. Factors such as temperature extremes, humidity levels, presence of dust or debris, and exposure to corrosive substances can affect the compressor’s components and overall performance. Compressors used in harsh environments may require additional protection or specialized maintenance to mitigate these adverse conditions.
5. Proper Installation and Operation:
Proper installation and correct operation of the gas air compressor are essential for its longevity. Following the manufacturer’s guidelines for installation, ensuring proper ventilation, maintaining correct oil levels, and operating within the compressor’s specified capacity and pressure limits can help prevent excessive strain and premature wear.
Considering these factors, a well-maintained gas air compressor can typically last anywhere from 10 to 15 years or even longer. However, it’s important to note that this is a general estimate, and individual results may vary. Some compressors may experience shorter lifespans due to heavy usage, inadequate maintenance, or other factors, while others may last well beyond the expected lifespan with proper care and favorable conditions.
Ultimately, investing in a high-quality gas air compressor, adhering to recommended maintenance practices, and using it within its intended capabilities can help maximize its lifespan and ensure reliable performance for an extended period.
What Is the Impact of Altitude on Gas Air Compressor Performance?
Altitude can have a significant impact on the performance of gas air compressors. Here’s a detailed explanation:
1. Decreased Air Density:
As altitude increases, the air density decreases. This reduction in air density affects the performance of gas air compressors, primarily because compressors rely on the intake of ambient air to generate compressed air. With lower air density at higher altitudes, the compressor’s ability to draw in a sufficient volume of air is reduced.
2. Reduced Compressor Output:
The decrease in air density directly affects the compressor’s output. Gas air compressors may experience a decrease in their maximum airflow and pressure capabilities at higher altitudes. This reduction in output can impact the compressor’s efficiency and its ability to deliver the required compressed air for various applications.
3. Increased Compressor Workload:
At higher altitudes, gas air compressors need to work harder to maintain the desired level of compressed air output. The reduced air density means the compressor must compress a larger volume of air to achieve the same pressure as it would at lower altitudes. This increased workload can lead to higher energy consumption, increased wear and tear on the compressor components, and potentially decreased overall performance and lifespan.
4. Engine Power Loss:
If the gas air compressor is powered by an internal combustion engine (such as gasoline or diesel), altitude can also impact the engine’s performance. As the air density decreases, the engine may experience a power loss due to reduced oxygen availability for combustion. This can result in reduced engine horsepower and torque, affecting the compressor’s ability to generate compressed air.
5. Considerations for Proper Sizing:
When selecting a gas air compressor for use at higher altitudes, it is crucial to consider the specific altitude conditions and adjust the compressor’s size and capacity accordingly. Choosing a compressor with a higher airflow and pressure rating than required at sea level can help compensate for the reduced performance at higher altitudes.
6. Maintenance and Adjustments:
Regular maintenance and adjustments are necessary to optimize the performance of gas air compressors operating at higher altitudes. This includes monitoring and adjusting the compressor’s intake systems, fuel-to-air ratio, and ignition timing to account for the reduced air density and maintain proper combustion efficiency.
In summary, altitude has a notable impact on the performance of gas air compressors. The decrease in air density at higher altitudes leads to reduced compressor output, increased compressor workload, potential engine power loss, and considerations for proper sizing and maintenance. Understanding these effects is crucial for selecting and operating gas air compressors effectively in various altitude conditions.
What Fuels Are Commonly Used in Gas Air Compressors?
Gas air compressors can be powered by various fuels depending on the specific model and design. The choice of fuel depends on factors such as availability, cost, convenience, and environmental considerations. Here’s a detailed explanation of the fuels commonly used in gas air compressors:
1. Gasoline:
Gasoline is a widely used fuel in gas air compressors, particularly in portable models. Gasoline-powered compressors are popular due to the widespread availability of gasoline and the convenience of refueling. Gasoline engines are generally easy to start, and gasoline is relatively affordable in many regions. However, gasoline-powered compressors may emit more exhaust emissions compared to some other fuel options.
2. Diesel:
Diesel fuel is another common choice for gas air compressors, especially in larger industrial models. Diesel engines are known for their efficiency and durability, making them suitable for heavy-duty applications. Diesel fuel is often more cost-effective than gasoline, and diesel-powered compressors typically offer better fuel efficiency and longer runtime. Diesel compressors are commonly used in construction sites, mining operations, and other industrial settings.
3. Natural Gas:
Natural gas is a clean-burning fuel option for gas air compressors. It is a popular choice in areas where natural gas infrastructure is readily available. Natural gas compressors are often used in natural gas processing plants, pipeline operations, and other applications where natural gas is abundant. Natural gas-powered compressors offer lower emissions compared to gasoline or diesel, making them environmentally friendly.
4. Propane:
Propane, also known as liquefied petroleum gas (LPG), is commonly used as a fuel in gas air compressors. Propane-powered compressors are popular in construction, agriculture, and other industries where propane is used for various applications. Propane is stored in portable tanks, making it convenient for use in portable compressors. Propane-powered compressors are known for their clean combustion, low emissions, and easy availability.
5. Biogas:
In specific applications, gas air compressors can be fueled by biogas, which is produced from the decomposition of organic matter such as agricultural waste, food waste, or wastewater. Biogas compressors are used in biogas production facilities, landfills, and other settings where biogas is generated and utilized as a renewable energy source. The use of biogas as a fuel in compressors contributes to sustainability and reduces dependence on fossil fuels.
It’s important to note that the availability and suitability of these fuel options may vary depending on the region, infrastructure, and specific application requirements. When selecting a gas air compressor, it’s crucial to consider the compatibility of the compressor with the available fuel sources and to follow the manufacturer’s guidelines regarding fuel selection, storage, and safety precautions.
editor by CX 2024-03-02