Product Description
Very good quality for your choice ! more details ,please contact us
Oil free / oil less dental Air compressor is mainly dental room, medical room etc
Features
1. Both 100 % copper and aluminium coil wire are available.
2. Compact, light, east to carry. Suit for mobile,
3. Oil free oilless silent series, get 100% purity pressed air
technical data as follows:
Model | Air delivery | Working pressure | Speed | Noise | Power | Outlet | tank/L | dimension |
(Nm3/min) | (Mpa) | (r.p.m) | (dB) | (kw) | (inch) | (L*W*H)CM | ||
ZW-0.1/7 | 0.1 | 0.7 | 980 | ≤78 | 1.5(220v) | G1/4″ | 40 | 75*35*75 |
ZW-0.24/7 | 0.24 | 0.7 | 950 | ≤81 | 2.2(380v) | G1/2″ | 80 | 114*40*90 |
ZW-0.3/7 | 0.3 | 0.7 | 950 | ≤81 | 2.2(380v) | G1/2″ | 80 | 114*40*90 |
VW-0.45/7 | 0.45 | 0.7 | 920 | ≤83 | 4(380v) | G1/2″ | 120 | 130*46*96 |
VW-0.6/7 | 0.6 | 0.7 | 950 | ≤84 | 5.5(380v) | G1/2″ | 120 | 130*46*96 |
VW-0.42/10 | 0.42 | 1.0 | 920 | ≤84 | 4(380v) | G1/2″ | 120 | 130*46*96 |
VW-0.5/14 | 0.5 | 1.4 | 670 | ≤84 | 5.5(380v) | G1/2″ | 180 | 145*50*110 |
WW-0.6/10 | 0.6 | 1.0 | 740 | ≤84 | 5.5(380v) | G1/2″ | 180 | 145*50*110 |
WW-0.9/7 | 0.9 | 0.7 | 810 | ≤84 | 7.5(380v) | G1/2″ | 180 | 145*50*110 |
WW-0.9/10 | 0.9 | 1.0 | 810 | ≤84 | 7.5(380v) | G1/2″ | 180 | 145*50*110 |
WW-0.7/12.5 | 0.7 | 1.3 | 740 | ≤84 | 7.5(380v) | G1/2″ | 180 | 145*50*110 |
WW-1.25/7 | 1..25 | 0.7 | 860 | ≤85 | 11(380v) | G3/4″ | 280 | 160*65*120 |
WW-1.25/10 | 1.25 | 1.0 | 770 | ≤85 | 11(380v) | G3/4″ | 280 | 160*65*120 |
WW-1.6/10 | 1.6 | 1.0 | 820 | ≤85 | 15(380v) | G3/4″ | 320 | 166*65*122 |
WW-1.8/10 | 1.8 | 1.0 | 900 | ≤86 | 15(380v) | G3/4″ | 320 | 166*65*122 |
WW-1.2/10 | 1.2 | 1.0 | 740 | ≤84 | 5.5*2(380v) | G1″ | 300 | 185*125*140 |
WW-1.8/7 | 1.8 | 0.7 | 810 | ≤84 | 7.5*2(380v) | G1″ | 300 | 185*125*140 |
WW-1.8/10 | 1.8 | 1.0 | 810 | ≤84 | 7.5*2(380v) | G1″ | 300 | 185*125*140 |
WW-1.4/12.5 | 1.4 | 1.3 | 740 | ≤84 | 7.5*2(380v) | G1″ | 300 | 185*125*140 |
WW-2.5/7 | 2.5 | 0.7 | 860 | ≤86 | 11*2(380v) | G1″ | 300 | 185*125*140 |
WW-2.5/10 | 2.5 | 1.0 | 770 | ≤86 | 11*2(380v) | G1″ | 300 | 185*125*140 |
WW-3.0/7 | 3 | 0.7 | 770 | ≤86 | 11*2(380v) | G1″ | 320 | 185*125*140 |
WW-3.0/10 | 3 | 1.0 | 810 | ≤86 | 11*2(380v) | G1″ | 320 | 185*125*140 |
WW-3.2/7 | 3.2 | 0.7 | 820 | ≤86 | 15*2(380v) | G1″ | 320 | 190*150*150 |
WW-3.2/10 | 3.2 | 1.0 | 820 | ≤86 | 15*2(380v) | G1″ | 320 | 190*150*150 |
WW.3.6/7 | 3.6 | 0.7 | 900 | ≤86 | 15*2(380v) | G1″ | 320 | 190*150*150 |
WW-3.6/10 | 3.6 | 1.0 | 900 | ≤86 | 15*2(380v) | G1″ | 320 | 190*150*150 |
WW.4.8/10 | 4.8 | 1.0 | 900 | ≤86 | 15*2(380v) 11*1(380v) | G11/2″ | / | 221*136*105 |
WW-5.4/10 | 5.4 | 1.0 | 900 | ≤86 | 15kw*3 | G11/2″ | / | 221*136*100 |
SW-6.5/8 | 6.5 | 0.8 | 640 | ≤86 | 55kw | DN50FL | / | 180*130*160 |
Drive Mode: | Electric |
---|---|
Performance: | Low Noise |
Configuration: | Portable |
Material: | Copper |
Power Source: | AC Power |
Voltage: | 380V 50Hz;460V 60Hz;220 60Hz |
Customization: |
Available
|
|
---|
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
How are air compressors used in refrigeration and HVAC systems?
Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:
1. Refrigerant Compression:
In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.
2. Refrigeration Cycle:
The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.
3. HVAC Cooling and Heating:
In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.
4. Air Conditioning:
Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.
5. Compressor Types:
Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.
6. Energy Efficiency:
Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.
By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.
Are there portable air compressors available for home use?
Yes, there are portable air compressors specifically designed for home use. These portable models offer convenience, versatility, and ease of use for various tasks around the house. Here are some key points about portable air compressors for home use:
1. Compact and Lightweight: Portable air compressors are typically compact and lightweight, making them easy to transport and store. They are designed with portability in mind, allowing homeowners to move them around the house or take them to different locations as needed.
2. Electric-Powered: Most portable air compressors for home use are electric-powered. They can be plugged into a standard household electrical outlet, eliminating the need for gasoline or other fuel sources. This makes them suitable for indoor use without concerns about emissions or ventilation.
3. Versatile Applications: Portable air compressors can be used for a wide range of home applications. They are commonly used for inflating tires, sports equipment, and inflatable toys. They are also handy for operating pneumatic tools such as nail guns, staplers, and paint sprayers. Additionally, portable air compressors can be used for cleaning tasks, powering airbrushes, and other light-duty tasks around the house.
4. Pressure and Capacity: Portable air compressors for home use typically have lower pressure and capacity ratings compared to larger industrial or commercial models. They are designed to meet the needs of common household tasks rather than heavy-duty applications. The pressure and capacity of these compressors are usually sufficient for most home users.
5. Oil-Free Operation: Many portable air compressors for home use feature oil-free operation. This means they do not require regular oil changes or maintenance, making them more user-friendly and hassle-free for homeowners.
6. Noise Level: Portable air compressors designed for home use often prioritize low noise levels. They are engineered to operate quietly, reducing noise disturbances in residential environments.
7. Cost: Portable air compressors for home use are generally more affordable compared to larger, industrial-grade compressors. They offer a cost-effective solution for homeowners who require occasional or light-duty compressed air applications.
When considering a portable air compressor for home use, it’s important to assess your specific needs and tasks. Determine the required pressure, capacity, and features that align with your intended applications. Additionally, consider factors such as portability, noise level, and budget to choose a suitable model that meets your requirements.
Overall, portable air compressors provide a practical and accessible compressed air solution for homeowners, allowing them to tackle a variety of tasks efficiently and conveniently within a home setting.
editor by CX 2023-09-28