Product Description
Latest 2HP Portable Airbrush Compressor(DA7002)
Product Detail:
Power: 1500W [2HP]
Air Flow @7bar: 100 L/M [3.18CFM]
Max Air Flow: 304 L/M [9.6CFM]
Noise Level: 54 dB (A)
Max. Pressure: 8 Bar [0.8Mpa]
Air Tank: 50L [11Gallon]
Gross/Net Weight: 62.5/50KG
Dimension: 710*425*730 mm
Specifications
1> Piston type;
2> Silent, Oil Free;
3> Used for DENTAL, MEDICAL
4> 2HP, 50L tank;
5> Work for 5PCS dental units
Options
Air Dryer System (ensure dryer air flow for your equipment)
Metal Silent Cabinet ( all operation key located outside of the cabinet, easy to use; Temperature sensor and cooling system, keep longer service life for the motor; With casters, you may move the compressor freely )
Characteristics:
1. Oil free: Do not need any lubricated oil, and harmless to the human body.
2. Super silent: Noise level lower than 56dB(a) to reduce noise pollution.
3. Multi-phase filteration: Advanced multi-phase filtration to ensure extremely clean air, and lengthen service life.
4. Safety using: Air compressor motors equipped with thermal prevention device to avoid overheating and protect motors.
5. Clean tank: All air receiver tanks have internal epoxy coating applied to avoid corrosion.
6. Automatic adjustment: High quality pressure switch used to control the power of air compressor automatically by adjustment of pressure level.
7. Pressure adjustment: Working pressure could be adjusted to meet the demand of different supporting equipments.
8. High durability: Serviceable time exceeds 15, 000 hours.
9. Simple operation: Using directly when connecting with power.
10. Easy maintanance: No need any lubricated oil.
11. Warranty: 2 years.
Applications:
Medical; Laboratory; Pharmacy; Food Fermentation; Life Science; Biotechnology; Analytical
Instrument; Measuring Apparatus; Water Processing Environmental Monitoring; Automation;
Coating Surface Processing; Makeup; Garments Manufacture; Shoemaking; Petro
Chemistry; Arts, crafts and hobby; Beauty And Body; Printing; Optical And Photo; Research
And Laboratory; Jewelry And Accessories; Electronic And Computers; Safety System;
Aviation And Military;
All Dynamic products are qualified by series certifications to ensure high quality, please be assured the purchase.
1. As the qualified manufacturer of medical equipments in China, we owned the certifications as following:
1.1 Industry Production License issued by Chinese Government.
1.2 Medical Device Manufacturing Enterprise License issued by State Food and Drug Administration
1.3 Medical Device Product Registration Certificate issued by State Food and Drug Administration
2. To meet the demand of high quality products and services from European and American markets, we owned the certifications as following:
2.1 German TUV ISO9001-2008 Quality Management System
2.2 German TUV ISO13485-2003 Medical Device Product Quality Management System
2.3 German TUV Medical CE Certification
2.4 German TUV Industrial CE Certification
2.5 America FDA Approved
Model | DA7001 | DA7002 | DA7003 | A7004 | DA7005 | |
Voltage/Hz | V | 100-240 | 100-240 | 100-240 | 100-240 | 100-240 |
Hz | 50/60 | 50/60 | 50/60 | 50/60 | 50/60 | |
Power | HP | 1 | 2 | 3 | 4 | 5 |
KW | 0.75 | 1.5 | 2.25 | 3 | 3.75 | |
Max Air Flow | L/min | 152 | 304 | 456 | 608 | 760 |
CFM | 5.37 | 10.74 | 16.10 | 21.47 | 26.84 | |
Air Flow @7bar | L/min | 50 | 100 | 150 | 200 | 250 |
CFM | 1.77 | 3.53 | 5.3 | 7.06 | 8.83 | |
Max. Pressure | Bar | 8 | 8 | 8 | 8 | 8 |
psi | 116 | 116 | 116 | 116 | 116 | |
Tank | L | 30 | 50 | 70 | 100 | 140 |
Gallon | 6.6 | 11.0 | 15.4 | 22.0 | 30.8 | |
Net Weight | Kg | 29.5 | 50 | 78 | 95 | 110 |
Lbs | 65.0 | 110.2 | 172 | 209.4 | 242.5 | |
Gross Weight | Kg | 33 | 62.5 | 90 | 114.5 | 148 |
Lbs | 72.8 | 137.8 | 198.4 | 252.4 | 326.3 | |
Noise Level | dB(A) | ≤70 | ≤70 | ≤70 | ≤70 | ≤70 |
Max current | A | 3.4 | 6.8 | 10.2 | 13.6 | 17 |
Dimensions | mm | 410×410×650 | 710×425×730 | 920×425×725 | 1070×460×750 | 1430×460×730 |
inch | 16.1×16.1×25.6 | 28×16.7×28.7 | 36.2×16.7×28.5 | 42.1×18.1×29.5 | 56.3×18.1×28.7 |
After-sales Service: | Provided |
---|---|
Warranty: | 2 Years |
Lubrication Style: | Oil-free |
Cooling System: | Air Cooling |
Cylinder Arrangement: | Dental Clinic |
Cylinder Position: | Horizontal |
Customization: |
Available
|
|
---|
What Is the Fuel Efficiency of Gas Air Compressors?
The fuel efficiency of gas air compressors can vary depending on several factors, including the compressor’s design, engine size, load capacity, and usage patterns. Gas air compressors typically use internal combustion engines powered by gasoline or propane to generate the mechanical energy required for compressing air. Here’s a detailed explanation of the factors that can influence the fuel efficiency of gas air compressors:
1. Engine Design and Size:
The design and size of the engine in a gas air compressor can impact its fuel efficiency. Engines with advanced technologies such as fuel injection and electronic controls tend to offer better fuel efficiency compared to older carbureted engines. Additionally, larger engines may consume more fuel to produce the required power, resulting in lower fuel efficiency compared to smaller engines for the same workload.
2. Load Capacity and Usage Patterns:
The load capacity and usage patterns of the gas air compressor play a significant role in fuel efficiency. Compressors operating at or near their maximum load capacity for extended periods may consume more fuel compared to compressors operating at lower loads. Additionally, compressors used intermittently or for lighter tasks may have better fuel efficiency due to reduced demand on the engine.
3. Maintenance and Tuning:
Proper maintenance and tuning of the gas air compressor’s engine can improve fuel efficiency. Regular maintenance tasks such as oil changes, air filter cleaning/replacement, spark plug inspection, and tuning the engine to the manufacturer’s specifications can help ensure optimal engine performance and fuel efficiency.
4. Operating Conditions:
The operating conditions, including ambient temperature, altitude, and humidity, can affect the fuel efficiency of gas air compressors. Extreme temperatures or high altitudes may require the engine to work harder, resulting in increased fuel consumption. Additionally, operating in humid conditions can affect the combustion process and potentially impact fuel efficiency.
5. Fuel Type:
The type of fuel used in the gas air compressor can influence its fuel efficiency. Gasoline and propane are common fuel choices for gas air compressors. The energy content and combustion characteristics of each fuel can affect the amount of fuel consumed per unit of work done. It is important to consider the specific fuel requirements and recommendations of the compressor manufacturer for optimal fuel efficiency.
6. Operator Skills and Practices:
The skills and practices of the operator can also impact fuel efficiency. Proper operation techniques, such as avoiding excessive idling, maintaining consistent engine speeds, and minimizing unnecessary load cycles, can contribute to improved fuel efficiency.
It is important to note that specific fuel efficiency ratings for gas air compressors can vary widely depending on the aforementioned factors. Manufacturers may provide estimated fuel consumption rates or fuel efficiency data for their specific compressor models, which can serve as a reference point when comparing different models or making purchasing decisions.
Ultimately, to maximize fuel efficiency, it is recommended to select a gas air compressor that suits the intended application, perform regular maintenance, follow the manufacturer’s guidelines, and operate the compressor efficiently based on the workload and conditions.
Can Gas Air Compressors Be Used for Sandblasting?
Yes, gas air compressors can be used for sandblasting. Sandblasting is a process that involves propelling abrasive materials, such as sand or grit, at high speeds to clean, etch, or prepare surfaces. Here’s a detailed explanation:
1. Compressed Air Requirement:
Sandblasting requires a reliable source of compressed air to propel the abrasive material. Gas air compressors, particularly those powered by gasoline or diesel engines, can provide the necessary compressed air for sandblasting operations. The compressors supply a continuous flow of compressed air at the required pressure to propel the abrasive material through the sandblasting equipment.
2. Portable and Versatile:
Gas air compressors are often portable and can be easily transported to different job sites, making them suitable for sandblasting applications in various locations. The portability of gas air compressors allows flexibility and convenience, especially when sandblasting needs to be performed on large structures, such as buildings, tanks, or bridges.
3. Pressure and Volume:
When selecting a gas air compressor for sandblasting, it is essential to consider the required pressure and volume of compressed air. Sandblasting typically requires higher pressures to effectively propel the abrasive material and achieve the desired surface treatment. Gas air compressors can provide higher pressure outputs compared to electric compressors, making them well-suited for sandblasting applications.
4. Compressor Size and Capacity:
The size and capacity of the gas air compressor should be chosen based on the specific requirements of the sandblasting project. Factors to consider include the size of the sandblasting equipment, the length of the air hose, and the desired duration of continuous operation. Selecting a gas air compressor with an appropriate tank size and airflow capacity ensures a consistent supply of compressed air during sandblasting.
5. Maintenance Considerations:
Regular maintenance is crucial for gas air compressors used in sandblasting applications. The abrasive nature of the sand or grit used in sandblasting can introduce particles into the compressor system, potentially causing wear or clogging. Regular inspection, cleaning, and maintenance of the compressor, including filters, valves, and hoses, help prevent damage and ensure optimal performance.
6. Safety Precautions:
When using gas air compressors for sandblasting, it is essential to follow appropriate safety precautions. Sandblasting generates airborne particles and dust, which can be hazardous if inhaled. Ensure proper ventilation, wear appropriate personal protective equipment (PPE), such as respiratory masks, goggles, and protective clothing, and follow recommended safety guidelines to protect the operator and others in the vicinity.
In summary, gas air compressors can be effectively used for sandblasting applications. They provide the necessary compressed air to propel abrasive materials, offer portability and versatility, and can deliver the required pressure and volume for efficient sandblasting operations. Proper compressor selection, maintenance, and adherence to safety precautions contribute to successful and safe sandblasting processes.
Can Gas Air Compressors Be Used in Remote Locations?
Yes, gas air compressors are well-suited for use in remote locations where access to electricity may be limited or unavailable. Their portability and reliance on gas engines make them an ideal choice for providing a reliable source of compressed air in such environments. Here’s a detailed explanation of how gas air compressors can be used in remote locations:
1. Independence from Electrical Grid:
Gas air compressors do not require a direct connection to the electrical grid, unlike electric air compressors. This independence from the electrical grid allows gas air compressors to be used in remote locations, such as wilderness areas, remote job sites, or off-grid locations, where it may be impractical or cost-prohibitive to establish electrical infrastructure.
2. Mobility and Portability:
Gas air compressors are designed to be portable and easy to transport. They are often equipped with handles, wheels, or trailers, making them suitable for remote locations. The gas engine powering the compressor provides mobility, allowing the compressor to be moved to different areas within the remote location as needed.
3. Fuel Versatility:
Gas air compressors can be fueled by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This fuel versatility ensures that gas air compressors can adapt to the available fuel sources in remote locations. For example, if gasoline or diesel is readily available, the gas air compressor can be fueled with these fuels. Similarly, if natural gas or propane is accessible, the compressor can be configured to run on these gases.
4. On-Site Power Generation:
In remote locations where electricity is limited, gas air compressors can serve as on-site power generators. They can power not only the compressor itself but also other equipment or tools that require electricity for operation. This versatility makes gas air compressors useful for a wide range of applications in remote locations, such as powering lights, tools, communication devices, or small appliances.
5. Off-Grid Operations:
Gas air compressors enable off-grid operations, allowing tasks and activities to be carried out in remote locations without relying on external power sources. This is particularly valuable in industries such as mining, oil and gas exploration, forestry, or construction, where operations may take place in remote and isolated areas. Gas air compressors provide the necessary compressed air for pneumatic tools, drilling equipment, and other machinery required for these operations.
6. Emergency Preparedness:
Gas air compressors are also beneficial for emergency preparedness in remote locations. In situations where natural disasters or emergencies disrupt the power supply, gas air compressors can provide a reliable source of compressed air for essential equipment and systems. They can power emergency lighting, communication devices, medical equipment, or backup generators, ensuring operational continuity in critical situations.
7. Adaptability to Challenging Environments:
Gas air compressors are designed to withstand various environmental conditions, including extreme temperatures, humidity, dust, and vibrations. This adaptability to challenging environments makes them suitable for use in remote locations, where environmental conditions may be harsh or unpredictable.
Overall, gas air compressors can be effectively used in remote locations due to their independence from the electrical grid, mobility, fuel versatility, on-site power generation capabilities, suitability for off-grid operations, emergency preparedness, and adaptability to challenging environments. These compressors provide a reliable source of compressed air, enabling a wide range of applications in remote settings.
editor by CX 2023-09-26