Tag Archives: air oxygen compressor

China Best Sales High Pressure Oxygen Compressor Oil Free Oxygen Compressor Nitrogen Compressor mini air compressor

Product Description

High Pressure Oxygen Compressor Oil Free Oxygen Compressor Nitrogen Compressor

Product Description

Product features

1.Touch display PLC control.
2.Remote control is optional.
3.Inlet and outlet pressure overload,temperature overheating,cooling water failure, circulation rolling alarm and stop.
4.Operation time display, maintenance cycle prompt.
5.With water tank and circulating pump without external pipeline, filling antifreeze at low temperature without obstruction.

 

Compressed media Nitrogen (must be dry and particle free)
Model VWN-180/5-25-II
Rated flow (standard state) 180Nm3/h
Intake air temperature ≤40
Intake pressure 0.5Mpa
Exhaust pressure 2.5Mpa
Cylinder diameter * quantity (Φ90+φ65)*2
Engine speed 720r/min
Cooling mode Air cooling
Lubrication method Fully oil-free lubrication
Compression series 2
Structural type Angle type, V type
Motor power 11kw*2
Transmission mode Belt drive
Installation type Basic type
Dual pressure controller Intake 4-6
Control mode Completely oil-free lubrication, air cooling, reciprocating piston type
Size of inlet and outlet RC1″
Dimensions  1500*1350*1100mm
Weight 280kg

Product Parameters

 

Compressed media
(General for oxygen and nitrogen)
Model Capacity
(Nm3/h)
Intake pressure
(MPa)
Exhaust pressure
(MPa)
Power
(kW)
Dimensions
(mm)
Oxygen/Nitrogen VW-0.33/5-25 20 0.5 2.5  1220*500*800
Oxygen/Nitrogen ZWN-3.6/4-8 3.6 0.4 0.8  0.75  750*500*650
Oxygen/Nitrogen VWN-10/5-25 10 0.5 2.5  1600*700*1500
Oxygen/Nitrogen VWN-60/5-16 60 0.5 1.6  5.5  1250*500*900
Oxygen/Nitrogen VWN-20/6-20 20 0.6 2.0  1250*600*900
Oxygen/Nitrogen VWN-20/5-25 20 0.5 2.5  1050*600*1000
Oxygen/Nitrogen VWN-40/7-25 40 0.7 2.5  1250*500*900
Oxygen/Nitrogen VWN-60/4-25 60 0.4 2.5  11  1250*700*900
Oxygen/Nitrogen WWN-80/4-25 80 0.4 2.5  11  1350*700*1200
Oxygen/Nitrogen VWN-80/7-25 80 0.7 2.5  7.5  1250*700*900
Oxygen/Nitrogen VWN-60/4-30 60 0.4 3.0  1250*500*900
Oxygen/Nitrogen VWN-50/4-30 50 0.4 3.0  7.5  1250*650*1000
Oxygen/Nitrogen VWN-80/5-30 80 0.5 3.0  11  1250*700*1000
Oxygen/Nitrogen VWN-30/5-35 30 0.5 3.5  5.5  1050*500*1000
Oxygen/Nitrogen VWN-50/5-35 50 0.5 3.5  7.5  1050*700*1000
Oxygen/Nitrogen VWN-40/5-40 40 0.5 4.0  7.5  1250*600*900
Oxygen/Nitrogen VWY-80/0.5-50 80 0.05 5.0  18.5  1250*700*900
Oxygen/Nitrogen VWND-55/5-8 55 0.5 0.8  1400*810*1300
Oxygen/Nitrogen VWN-60/5-10 60 0.5 1.0  1250*500*900
Oxygen/Nitrogen VWY-75/4-16 75 0.4 1.6  7.5  1050*500*1000
Oxygen/Nitrogen VWND-100/5-10 100 0.5 1.0  5.5  1400*930*1350
Oxygen/Nitrogen VWN-120/6-16 120 0.6 1.6  11  1250*700*1000
Oxygen/Nitrogen VWN-140/5-8 140 0.5 0.8  5.5  1250*600*900
Oxygen/Nitrogen WWND-150/4-10 150 0.4 1.0  11  1430*1030*1350
Oxygen/Nitrogen SWND-240/4-10 240 0.4 1.0  15  1500×1100×1620
Oxygen/Nitrogen VWY-120/5-10 120 0.5 1.0  7.5  1250*600*1000
Oxygen/Nitrogen SWY-150/4-16 150 0.4 1.6  15  1250*900*1480
Oxygen/Nitrogen WWN-100/4-25 100 0.4 2.5  15  1350*700*1200
Oxygen/Nitrogen WWN-120/6-30 120 0.6 3.0  15  1250*800*1200
Oxygen/Nitrogen WWN-120/6-45 120 0.6 4.5  18.5  1350*1100*1100
Oxygen/Nitrogen WWN-80/5-45 80 0.5 4.5  15  1350*700*1200
Oxygen/Nitrogen WWN-240/5-10 240 0.5 1.0  15 1350*800*1200
Oxygen/Nitrogen WWN-300/0.5-8-II 300 0.05 0.8  22*2 2500*1200*800
Oxygen/Nitrogen WWNFB-900/4-8-II 900 0.4 0.8  22*2 2600*1000*900
Oxygen/Nitrogen VWN-180/5-25-II 180 0.5 2.5  11*2 1500*1350*1100
Oxygen/Nitrogen WWN-200/3-18-II 200 0.3 1.8  11*2 1450*1350*1100
Oxygen/Nitrogen WWN-200/6-30-II 200 0.6 3.0  11*2 1600*1600*1200
Oxygen/Nitrogen WWFB-430/4-9 430 0.4 0.9  22  1500*1000*800

Successful cases


 

FAQ

FAQ:
Q1. Are you trading company or manufacture ?

A: We are professional manufacture of screw air compressor of HangZhou,ZheJiang ,China. More than 18 years of experience in air compressor manufacturing.

 

Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.

 

Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.

 

Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
     2. Well-trained engineers available to overseas service.
     3.CHINAMFG agents and after service avaiable.arrange our engineers to help you training and installation.

 

Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.

 

Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.

 

Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.

 

Q8. How do you control quality ?
A: 1. The raw materials are strictly inspected
     2. Some key parts are imported from overseas
     3. Each compressor must pass at least 5 hours of continuous testing before leaving the factory.

 

Q9. Do you offer OEM service ?
A: Yes.Both OEM & ODM service can be accepted.

 

Q10.How long could your air compressor be used?
A: Generally, more than 10 years.
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: 24 Months
Lubrication Style: Oil-free
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What Is the Typical Lifespan of a Gas Air Compressor?

The typical lifespan of a gas air compressor can vary depending on several factors, including the quality of the compressor, its usage patterns, maintenance practices, and environmental conditions. However, with proper care and maintenance, a gas air compressor can last for many years. Here’s a detailed explanation of the factors that can affect the lifespan of a gas air compressor:

1. Quality of the Compressor:

The quality and construction of the gas air compressor play a significant role in determining its lifespan. Compressors made with high-quality materials, precision engineering, and robust components are generally more durable and can withstand heavy usage over an extended period.

2. Usage Patterns:

The usage patterns of the gas air compressor can impact its lifespan. If the compressor is used consistently and for extended periods, it may experience more wear and tear compared to compressors used intermittently or for lighter tasks. Heavy-duty applications, such as continuous operation with high-demand tools, can put more strain on the compressor and potentially reduce its lifespan.

3. Maintenance Practices:

Regular maintenance is crucial for extending the lifespan of a gas air compressor. Following the manufacturer’s recommended maintenance schedule, performing routine tasks like oil changes, filter cleaning/replacement, and inspection of components can help prevent issues and ensure optimal performance. Neglecting maintenance can lead to accelerated wear and potential breakdowns.

4. Environmental Conditions:

The operating environment can significantly impact the lifespan of a gas air compressor. Factors such as temperature extremes, humidity levels, presence of dust or debris, and exposure to corrosive substances can affect the compressor’s components and overall performance. Compressors used in harsh environments may require additional protection or specialized maintenance to mitigate these adverse conditions.

5. Proper Installation and Operation:

Proper installation and correct operation of the gas air compressor are essential for its longevity. Following the manufacturer’s guidelines for installation, ensuring proper ventilation, maintaining correct oil levels, and operating within the compressor’s specified capacity and pressure limits can help prevent excessive strain and premature wear.

Considering these factors, a well-maintained gas air compressor can typically last anywhere from 10 to 15 years or even longer. However, it’s important to note that this is a general estimate, and individual results may vary. Some compressors may experience shorter lifespans due to heavy usage, inadequate maintenance, or other factors, while others may last well beyond the expected lifespan with proper care and favorable conditions.

Ultimately, investing in a high-quality gas air compressor, adhering to recommended maintenance practices, and using it within its intended capabilities can help maximize its lifespan and ensure reliable performance for an extended period.

air compressor

What Is the Role of Air Receivers in Gas Air Compressor Systems?

Air receivers play a crucial role in gas air compressor systems by serving as storage tanks for compressed air. Here’s a detailed explanation:

1. Storage and Stabilization:

The primary function of an air receiver is to store compressed air generated by the gas air compressor. As the compressor produces compressed air, the air receiver collects and stores it. This storage capacity helps meet fluctuating demand in compressed air usage, providing a buffer between the compressor and the system’s air consumption.

By storing compressed air, the air receiver helps stabilize the supply to the system, reducing pressure fluctuations and ensuring a consistent and reliable flow of compressed air. This is particularly important in applications where the demand for compressed air may vary or experience peaks and valleys.

2. Pressure Regulation:

Another role of the air receiver is to assist in pressure regulation within the gas air compressor system. As compressed air enters the receiver, the pressure inside increases. When the pressure reaches a predetermined upper limit, typically set by a pressure switch or regulator, the compressor stops supplying air, and the excess air is stored in the receiver.

Conversely, when the pressure in the system drops below a certain lower limit, the pressure switch or regulator signals the compressor to start, replenishing the compressed air in the receiver and maintaining the desired pressure level. This cycling of the compressor based on pressure levels helps regulate and control the overall system pressure.

3. Condensate Separation:

During the compression process, moisture or condensate can form in the compressed air due to the cooling effect. The air receiver acts as a reservoir that allows the condensate to settle at the bottom, away from the outlet. The receiver often includes a drain valve at the bottom to facilitate the removal of accumulated condensate, preventing it from reaching downstream equipment and causing potential damage or performance issues.

4. Energy Efficiency:

Air receivers contribute to energy efficiency in gas air compressor systems. They help optimize the operation of the compressor by reducing the occurrence of short-cycling, which refers to frequent on-off cycling of the compressor due to rapid pressure changes. Short-cycling can cause excessive wear on the compressor and reduce its overall efficiency.

The presence of an air receiver allows the compressor to operate in longer and more efficient cycles. The compressor runs until the receiver reaches the upper pressure limit, ensuring a more stable and energy-efficient operation.

5. Air Quality Improvement:

Depending on the design, air receivers can also aid in improving air quality in the compressed air system. They provide a space for the compressed air to cool down, allowing moisture and some contaminants to condense and separate from the air. This can be further enhanced with the use of additional filtration and drying equipment installed downstream of the receiver.

In summary, air receivers play a vital role in gas air compressor systems by providing storage capacity, stabilizing compressed air supply, regulating system pressure, separating condensate, improving energy efficiency, and contributing to air quality control. They are an integral component in ensuring the reliable and efficient operation of compressed air systems across various industries and applications.

air compressor

What Is a Gas Air Compressor?

A gas air compressor is a type of air compressor that is powered by a gas engine instead of an electric motor. It uses a combustion engine, typically fueled by gasoline or diesel, to convert fuel energy into mechanical energy, which is then used to compress air. Here’s a detailed explanation of a gas air compressor:

1. Power Source:

A gas air compressor utilizes a gas engine as its power source. The engine can be fueled by gasoline, diesel, or other types of combustible gases, such as natural gas or propane. The combustion engine drives the compressor pump to draw in air and compress it to a higher pressure.

2. Portable and Versatile:

Gas air compressors are often designed to be portable and versatile. The gas engine provides mobility, allowing the compressor to be easily transported and used in different locations, including remote job sites or areas without access to electricity. This makes gas air compressors suitable for applications such as construction projects, outdoor activities, and mobile service operations.

3. Compressor Pump:

The compressor pump in a gas air compressor is responsible for drawing in air and compressing it. The pump can be of various types, including reciprocating, rotary screw, or centrifugal, depending on the specific design of the gas air compressor. The pump’s role is to increase the pressure of the incoming air, resulting in compressed air that can be used for various applications.

4. Pressure Regulation:

Gas air compressors typically feature pressure regulation mechanisms to control the output pressure of the compressed air. This allows users to adjust the pressure according to the requirements of the specific application. The pressure regulation system may include pressure gauges, regulators, and safety valves to ensure safe and reliable operation.

5. Applications:

Gas air compressors find applications in a wide range of industries and activities. They are commonly used in construction sites for powering pneumatic tools such as jackhammers, nail guns, and impact wrenches. Gas air compressors are also utilized in agriculture for operating air-powered machinery like sprayers and pneumatic seeders. Additionally, they are employed in recreational activities such as inflating tires, sports equipment, or inflatable structures.

6. Maintenance and Fuel Considerations:

Gas air compressors require regular maintenance, including engine servicing, oil changes, and filter replacements, to ensure optimal performance and longevity. The type of fuel used in the gas engine also needs to be considered. Gasoline-powered compressors are commonly used in smaller applications, while diesel-powered compressors are preferred for heavy-duty and continuous operation due to their higher fuel efficiency and durability.

Overall, a gas air compressor is an air compressor that is powered by a gas engine, offering mobility and versatility. It provides compressed air for various applications and is commonly used in construction, agriculture, and outdoor activities. Regular maintenance and fuel considerations are essential to ensure reliable operation and optimal performance.

China Best Sales High Pressure Oxygen Compressor Oil Free Oxygen Compressor Nitrogen Compressor   mini air compressorChina Best Sales High Pressure Oxygen Compressor Oil Free Oxygen Compressor Nitrogen Compressor   mini air compressor
editor by CX 2024-04-22

China Good quality Oxygen Cylinder Filling Compressor for 40L 50L 150bar Cylinder air compressor for car

Product Description

Oxygen Cylinder Filling Compressor for 40L 50L 150bar Cylinder             

  

Introduction

Oil free lubrication reciprocating piston type high pressure Oxygen Cylinder Filling Compressor, there are air cooling and water cooling 2 cooling way, with single action and double action structure, and vertical and angle type etc.

Cape-Golden’s high pressure Oxygen Cylinder Filling Compressor lubrication system, with excellent performance, stable operation, high efficiency and energy saving, long service life, widely used in oxygen canned filling, chemical process and plateau. Together with oxygen generator to form a relatively simple and safe high-pressure oxygen system.

The Oxygen Cylinder Filling Compressor involved in gas compression are not lubricated with thin oil, and the piston ring, guide ring and other friction seals are made of special materials with self-lubricating properties.

 

Main Technical Parameters

 

No. Item Data
1 Compressor model GOW-15/4-150
2 Compressor type V type, reciprocating piston, water cooled, air cooled
3 Compression medium oxygen
4 Volume flow 15nm3/h
5 Intake pressure 4bar
6 Exhaust pressure 150bar
7 Inlet temperature ≤40ºC
8 Exhaust temperature no more than ambient temperature +15ºC after cooling
9 Driving mode explosion-proof motor
10 External size (length × width × height) 1650*950*1470mm
11 Weight Weight

 

Installation Site Requirements

The Oxygen Cylinder Filling Compressor should be installed in an indoor place with good lighting and ventilation, clean environment, and low air humidity. The foundation should be firm and flat, and the ambient temperature should be controlled below 38 ° C.  There should be enough space around the machine for easy maintenance. When the Oxygen Cylinder Filling Compressor runs, the vibration is small, and the requirements for the foundation are not strict. However, the thickness of the concrete of the foundation should be ≥20cm. The whole base should be closely attached to the horizontal plane of the foundation, which can be fixed with expansion bolts.

 

Process Characteristics

 

The Oxygen Cylinder Filling Compressor is no liquid lubricant, and there is also no liquid lubricant in the crankcase supporting the crankshaft. The piston ring and guide ring is made of high quality modified PTFE with self-lubricating performance, the main parts of stainless steel and copper, aluminum and other material is not easy to produce sparks, all bearings with seals prevent loss of grease, the high pressure oxygen compressor lubrication system, the movement of the friction pair of grease are the antioxidant of oxygen compressor special grease.

 

Product Presentation

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Hydrogen, Nitrogen, Oxygen, Ozone
Purpose: Gas Filling
Parts: Valve
Application Fields: Medical
Noise Level: Low
Machine Size: Medium
Samples:
US$ 12070/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What Is the Typical Lifespan of a Gas Air Compressor?

The typical lifespan of a gas air compressor can vary depending on several factors, including the quality of the compressor, its usage patterns, maintenance practices, and environmental conditions. However, with proper care and maintenance, a gas air compressor can last for many years. Here’s a detailed explanation of the factors that can affect the lifespan of a gas air compressor:

1. Quality of the Compressor:

The quality and construction of the gas air compressor play a significant role in determining its lifespan. Compressors made with high-quality materials, precision engineering, and robust components are generally more durable and can withstand heavy usage over an extended period.

2. Usage Patterns:

The usage patterns of the gas air compressor can impact its lifespan. If the compressor is used consistently and for extended periods, it may experience more wear and tear compared to compressors used intermittently or for lighter tasks. Heavy-duty applications, such as continuous operation with high-demand tools, can put more strain on the compressor and potentially reduce its lifespan.

3. Maintenance Practices:

Regular maintenance is crucial for extending the lifespan of a gas air compressor. Following the manufacturer’s recommended maintenance schedule, performing routine tasks like oil changes, filter cleaning/replacement, and inspection of components can help prevent issues and ensure optimal performance. Neglecting maintenance can lead to accelerated wear and potential breakdowns.

4. Environmental Conditions:

The operating environment can significantly impact the lifespan of a gas air compressor. Factors such as temperature extremes, humidity levels, presence of dust or debris, and exposure to corrosive substances can affect the compressor’s components and overall performance. Compressors used in harsh environments may require additional protection or specialized maintenance to mitigate these adverse conditions.

5. Proper Installation and Operation:

Proper installation and correct operation of the gas air compressor are essential for its longevity. Following the manufacturer’s guidelines for installation, ensuring proper ventilation, maintaining correct oil levels, and operating within the compressor’s specified capacity and pressure limits can help prevent excessive strain and premature wear.

Considering these factors, a well-maintained gas air compressor can typically last anywhere from 10 to 15 years or even longer. However, it’s important to note that this is a general estimate, and individual results may vary. Some compressors may experience shorter lifespans due to heavy usage, inadequate maintenance, or other factors, while others may last well beyond the expected lifespan with proper care and favorable conditions.

Ultimately, investing in a high-quality gas air compressor, adhering to recommended maintenance practices, and using it within its intended capabilities can help maximize its lifespan and ensure reliable performance for an extended period.

air compressor

Can Gas Air Compressors Be Used for Sandblasting?

Yes, gas air compressors can be used for sandblasting. Sandblasting is a process that involves propelling abrasive materials, such as sand or grit, at high speeds to clean, etch, or prepare surfaces. Here’s a detailed explanation:

1. Compressed Air Requirement:

Sandblasting requires a reliable source of compressed air to propel the abrasive material. Gas air compressors, particularly those powered by gasoline or diesel engines, can provide the necessary compressed air for sandblasting operations. The compressors supply a continuous flow of compressed air at the required pressure to propel the abrasive material through the sandblasting equipment.

2. Portable and Versatile:

Gas air compressors are often portable and can be easily transported to different job sites, making them suitable for sandblasting applications in various locations. The portability of gas air compressors allows flexibility and convenience, especially when sandblasting needs to be performed on large structures, such as buildings, tanks, or bridges.

3. Pressure and Volume:

When selecting a gas air compressor for sandblasting, it is essential to consider the required pressure and volume of compressed air. Sandblasting typically requires higher pressures to effectively propel the abrasive material and achieve the desired surface treatment. Gas air compressors can provide higher pressure outputs compared to electric compressors, making them well-suited for sandblasting applications.

4. Compressor Size and Capacity:

The size and capacity of the gas air compressor should be chosen based on the specific requirements of the sandblasting project. Factors to consider include the size of the sandblasting equipment, the length of the air hose, and the desired duration of continuous operation. Selecting a gas air compressor with an appropriate tank size and airflow capacity ensures a consistent supply of compressed air during sandblasting.

5. Maintenance Considerations:

Regular maintenance is crucial for gas air compressors used in sandblasting applications. The abrasive nature of the sand or grit used in sandblasting can introduce particles into the compressor system, potentially causing wear or clogging. Regular inspection, cleaning, and maintenance of the compressor, including filters, valves, and hoses, help prevent damage and ensure optimal performance.

6. Safety Precautions:

When using gas air compressors for sandblasting, it is essential to follow appropriate safety precautions. Sandblasting generates airborne particles and dust, which can be hazardous if inhaled. Ensure proper ventilation, wear appropriate personal protective equipment (PPE), such as respiratory masks, goggles, and protective clothing, and follow recommended safety guidelines to protect the operator and others in the vicinity.

In summary, gas air compressors can be effectively used for sandblasting applications. They provide the necessary compressed air to propel abrasive materials, offer portability and versatility, and can deliver the required pressure and volume for efficient sandblasting operations. Proper compressor selection, maintenance, and adherence to safety precautions contribute to successful and safe sandblasting processes.

air compressor

How Does a Gas Air Compressor Work?

A gas air compressor works by utilizing a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air can then be used for various applications. Here’s a detailed explanation of how a gas air compressor operates:

1. Gas Engine:

A gas air compressor is equipped with a gas engine as its power source. The gas engine is typically fueled by gasoline, diesel, natural gas, or propane. When the engine is started, the fuel is combusted within the engine’s cylinders, generating mechanical energy in the form of rotational motion.

2. Compressor Pump:

The gas engine drives the compressor pump through a mechanical linkage, such as a belt or direct coupling. The compressor pump is responsible for drawing in atmospheric air and compressing it to a higher pressure. There are different types of compressor pumps used in gas air compressors, including reciprocating, rotary screw, or centrifugal, each with its own operating principles.

3. Intake Stroke:

In a reciprocating compressor pump, the intake stroke begins when the piston moves downward within the cylinder. This creates a vacuum, causing the inlet valve to open and atmospheric air to be drawn into the cylinder. In rotary screw or centrifugal compressors, air is continuously drawn in through the intake port as the compressor operates.

4. Compression Stroke:

During the compression stroke in a reciprocating compressor, the piston moves upward, reducing the volume within the cylinder. This compression action causes the air to be compressed and its pressure to increase. In rotary screw compressors, two interlocking screws rotate, trapping and compressing the air between them. In centrifugal compressors, air is accelerated and compressed by high-speed rotating impellers.

5. Discharge Stroke:

Once the air is compressed, the discharge stroke begins in reciprocating compressors. The piston moves upward, further reducing the volume and forcing the compressed air out of the cylinder through the discharge valve. In rotary screw compressors, the compressed air is discharged through an outlet port as the interlocking screws continue to rotate. In centrifugal compressors, the high-pressure air is discharged from the impeller into the surrounding volute casing.

6. Pressure Regulation:

Gas air compressors often include pressure regulation mechanisms to control the output pressure of the compressed air. This can be achieved through pressure switches, regulators, or control systems that adjust the compressor’s operation based on the desired pressure setting. These mechanisms help maintain a consistent and controlled supply of compressed air for the specific application requirements.

7. Storage and Application:

The compressed air produced by the gas air compressor is typically stored in a receiver tank or used directly for applications. The receiver tank helps stabilize the pressure and provides a reservoir of compressed air for immediate use. From the receiver tank, the compressed air can be distributed through pipelines to pneumatic tools, machinery, or other devices that require the compressed air for operation.

Overall, a gas air compressor operates by using a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air is then regulated and used for various applications, providing a reliable source of power for pneumatic tools, machinery, and other equipment.

China Good quality Oxygen Cylinder Filling Compressor for 40L 50L 150bar Cylinder   air compressor for carChina Good quality Oxygen Cylinder Filling Compressor for 40L 50L 150bar Cylinder   air compressor for car
editor by CX 2024-04-11

China Hot selling Oil Free Reciprocating Low Pressure Oxygen Compressor air compressor lowes

Product Description

 

Oil Free Oxygen Compressor Low Cost for Operation           
  

 

Introduction

Cape-Golden Oil Free Oxygen Compressor is no liquid lubricant in the body and no liquid lubricant in the crankcase supporting the crankshaft. Piston ring and guide ring is made of high quality modified PTFE with self-lubricating performance. The main parts of stainless steel and copper, aluminum and other material is not easy to produce sparks, all bearings with seals prevent loss of grease, the high pressure Oil Free Oxygen Compressor lubrication system, the movement of the friction pair of grease are the antioxidant of Oil Free Oxygen Compressor special grease.

 

 

Product Specification

Model

Capacity/

Flow Rate

Inlet Pressure Discharge Pressure Power Weight Dimension(L*W*H)
WWZ-3/4-150 3m³/h 3-4bar 150bar 4kw 140kg 1080X820X850mm
WWZ-5/4-150 5m³/h 3-4bar 150bar 5.5kw 210kg 1080X820X850mm
WWZ-10/4-150 10m³/h 3-4bar 150bar 7.5kw 350kg 1080X900X850mm
WWZ-15/4-150 15m³/h 3-4bar 150bar 11kw 350kg 1250X1571X850mm
WWZ-20/4-150 20m³/h 3-4bar 150bar 15kw 470kg 1250X1571X850mm
WWZ-30/4-150 30m³/h 3-4bar 150bar 15kw 500kg 1350X1571X900mm
WWZ-40/4-150 40m³/h 3-4bar 150bar 15kw 500kg 1600X1100X1100mm
WWZ-50/4-150 50m³/h 3-4bar 150bar 15kw 500kg 1600X1100X1100mm

 

Oxygen Compressor Control Mode

Oil Free Oxygen Compressor adopts inlet, exhaust pressure switch + inlet and exhaust solenoid valve automatic control.

The Oil Free Oxygen Compressor‘s electrical control loop is connected with the inlet and exhaust pressure switch, in which the inlet pressure switch is normally open, used for the protection of shutdown when the inlet pressure is too low.

The exhaust pressure switch is normally closed, which is used for stopping protection when the exhaust pressure is too high. The specific control principle is: when the air source pressure reaches the upper limit of the intake pressure switch set value, the pressure switch is closed, press the start button at this time, the motor runs, the intake electromagnetic power is opened, the exhaust solenoid valve is disconnected, and the fan starts running and the compressor works normally.

When the exhaust pressure rises to the upper limit of the exhaust pressure switch set value, the exhaust pressure switch acts and the machine stops running. At the same time, the inlet solenoid valve is disconnected and closed.

When the exhaust pressure drops to the lower limit set by the exhaust pressure switch, the exhaust pressure switch is closed, and the machine continues to operate. The oxygen bottling machine needs to be manually reset and run. When the air source pressure falls to the lower limit of the intake pressure switch set value, the intake pressure switch is disconnected, and the machine stops running in standby state.

When the air source pressure is restored to the upper limit of the inlet pressure switch set value, the inlet pressure switch is closed and the machine continues to run.

Temperature protection, each stage of the compressor is equipped with temperature sensor, when the exhaust temperature of a stage is too high, the alarm will stop.

Operation & Maintenance

Keep the Oil Free Oxygen Compressor clean, observe diligently, deal with abnormal situation in time, do not let the compressor work with failure. Compressor disassembly maintenance or replacement parts must be carried out by experienced maintenance personnel or the production plant to avoid unnecessary losses.

It is necessary to check whether the voltage and current deviation is too large to prevent over-voltage or under-voltage operation and damage to the motor. 

During the normal operation of the compressor, it is easy not to disconnect the power supply. In case of power failure or power failure for other reasons, the power supply must be cut off to stop the work. 

If any abnormal sound is found during the operation of the compressor, it should be stopped immediately for inspection.

 

Show

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Hydrogen, Nitrogen, Oxygen, Ozone
Purpose: Gas Filling
Parts: Valve
Application Fields: Medical
Noise Level: Low
Machine Size: Medium
Samples:
US$ 7720/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How Do Gas Air Compressors Compare to Diesel Air Compressors?

When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:

1. Fuel Efficiency:

Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.

2. Power Output:

Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.

3. Cost:

In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.

4. Maintenance Requirements:

Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.

5. Environmental Impact:

When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.

6. Portability and Mobility:

Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.

It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.

In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.

air compressor

Can Gas Air Compressors Be Used for Natural Gas Compression?

Gas air compressors are not typically used for natural gas compression. Here’s a detailed explanation:

1. Different Compressed Gases:

Gas air compressors are specifically designed to compress atmospheric air. They are not typically designed or suitable for compressing natural gas. Natural gas, which is primarily composed of methane, requires specialized compressors designed to handle the unique properties and characteristics of the gas.

2. Safety Considerations:

Natural gas compression involves handling a flammable and potentially hazardous substance. Compressing natural gas requires specialized equipment that meets stringent safety standards to prevent leaks, minimize the risk of ignition or explosion, and ensure the safe handling of the gas. Gas air compressors may not have the necessary safety features or materials to handle natural gas safely.

3. Equipment Compatibility:

Natural gas compression systems typically include components such as gas compressors, gas coolers, separators, and control systems that are specifically designed and engineered for the compression and handling of natural gas. These components are built to withstand the specific demands and conditions associated with natural gas compression, including the high pressures and potential presence of impurities.

4. Efficiency and Performance:

Compressing natural gas requires specialized compressors that can handle the high-pressure ratios and volumetric flow rates associated with the gas. Gas air compressors are generally not designed to achieve the same compression ratios and performance levels required for natural gas compression. Using gas air compressors for natural gas compression would likely result in inefficient operation and suboptimal performance.

5. Regulatory Compliance:

Compressing natural gas is subject to various regulations and standards to ensure safety, environmental protection, and compliance with industry guidelines. These regulations often dictate specific requirements for equipment, materials, and operating procedures in natural gas compression systems. Gas air compressors may not meet these regulatory requirements for natural gas compression.

6. Industry Standards and Practices:

The natural gas industry has well-established standards and best practices for equipment selection, installation, and operation in gas compression systems. These standards are based on the specific requirements and characteristics of natural gas. Gas air compressors do not align with these industry standards and practices, which are essential for safe and efficient natural gas compression.

In summary, gas air compressors are not suitable for natural gas compression. Natural gas compression requires specialized equipment designed to handle the unique properties and safety considerations associated with the gas. Compressors specifically engineered for natural gas compression offer the necessary performance, safety features, and regulatory compliance required for efficient and reliable operation in natural gas compression systems.

air compressor

Can Gas Air Compressors Be Used in Remote Locations?

Yes, gas air compressors are well-suited for use in remote locations where access to electricity may be limited or unavailable. Their portability and reliance on gas engines make them an ideal choice for providing a reliable source of compressed air in such environments. Here’s a detailed explanation of how gas air compressors can be used in remote locations:

1. Independence from Electrical Grid:

Gas air compressors do not require a direct connection to the electrical grid, unlike electric air compressors. This independence from the electrical grid allows gas air compressors to be used in remote locations, such as wilderness areas, remote job sites, or off-grid locations, where it may be impractical or cost-prohibitive to establish electrical infrastructure.

2. Mobility and Portability:

Gas air compressors are designed to be portable and easy to transport. They are often equipped with handles, wheels, or trailers, making them suitable for remote locations. The gas engine powering the compressor provides mobility, allowing the compressor to be moved to different areas within the remote location as needed.

3. Fuel Versatility:

Gas air compressors can be fueled by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This fuel versatility ensures that gas air compressors can adapt to the available fuel sources in remote locations. For example, if gasoline or diesel is readily available, the gas air compressor can be fueled with these fuels. Similarly, if natural gas or propane is accessible, the compressor can be configured to run on these gases.

4. On-Site Power Generation:

In remote locations where electricity is limited, gas air compressors can serve as on-site power generators. They can power not only the compressor itself but also other equipment or tools that require electricity for operation. This versatility makes gas air compressors useful for a wide range of applications in remote locations, such as powering lights, tools, communication devices, or small appliances.

5. Off-Grid Operations:

Gas air compressors enable off-grid operations, allowing tasks and activities to be carried out in remote locations without relying on external power sources. This is particularly valuable in industries such as mining, oil and gas exploration, forestry, or construction, where operations may take place in remote and isolated areas. Gas air compressors provide the necessary compressed air for pneumatic tools, drilling equipment, and other machinery required for these operations.

6. Emergency Preparedness:

Gas air compressors are also beneficial for emergency preparedness in remote locations. In situations where natural disasters or emergencies disrupt the power supply, gas air compressors can provide a reliable source of compressed air for essential equipment and systems. They can power emergency lighting, communication devices, medical equipment, or backup generators, ensuring operational continuity in critical situations.

7. Adaptability to Challenging Environments:

Gas air compressors are designed to withstand various environmental conditions, including extreme temperatures, humidity, dust, and vibrations. This adaptability to challenging environments makes them suitable for use in remote locations, where environmental conditions may be harsh or unpredictable.

Overall, gas air compressors can be effectively used in remote locations due to their independence from the electrical grid, mobility, fuel versatility, on-site power generation capabilities, suitability for off-grid operations, emergency preparedness, and adaptability to challenging environments. These compressors provide a reliable source of compressed air, enabling a wide range of applications in remote settings.

China Hot selling Oil Free Reciprocating Low Pressure Oxygen Compressor   air compressor lowesChina Hot selling Oil Free Reciprocating Low Pressure Oxygen Compressor   air compressor lowes
editor by CX 2024-04-10

China wholesaler High Pressure Oxygen Compressor Medical Hospital Industrial Use air compressor oil

Product Description

 

High Pressure Oxygen Compressor Medical Hospital Industrial Use         
  

Brief

Oil free lubricated High Pressure Oxygen Compressor belong to reciprocating, piston, single action and air-cooled portable air compressors, they are designed for the departments which need pure air source and higher environmental requirements. High Pressure Oxygen Compressor is no need to add lubricating oil for this product, the exhaust gas does not contain oil and oil vapor and won’t pollute environment, compressed air consuming equipment and its product, and therefore, it is an environment-friendly energy-saving product.

 

Structure

 

High Pressure Oxygen Compressor:

1) Simple structure in linear type, easy in installation and maintain. 

2) Adopting advanced world famous brand components in pneumatic parts, electric parts and operation parts. 

3) High pressure double crank to control the die opening and closing. 

4) Running in a high automatic and intelligent, no pollution.

5) Apply a linker to connect with the air conveyor, which can directly on line with filling machine.

Product Specification

Model

Capacity/

Flow Rate

Inlet Pressure Discharge Pressure Power Weight Dimension(L*W*H)
WWZ-3/4-150 3m³/h 3-4bar 150bar 4kw 140kg 1080X820X850mm
WWZ-5/4-150 5m³/h 3-4bar 150bar 5.5kw 210kg 1080X820X850mm
WWZ-10/4-150 10m³/h 3-4bar 150bar 7.5kw 350kg 1080X900X850mm
WWZ-15/4-150 15m³/h 3-4bar 150bar 11kw 350kg 1250X1571X850mm
WWZ-20/4-150 20m³/h 3-4bar 150bar 15kw 470kg 1250X1571X850mm
WWZ-30/4-150 30m³/h 3-4bar 150bar 15kw 500kg 1350X1571X900mm
WWZ-40/4-150 40m³/h 3-4bar 150bar 15kw 500kg 1600X1100X1100mm
WWZ-50/4-150 50m³/h 3-4bar 150bar 15kw 500kg 1600X1100X1100mm

 
  

Application

The High Pressure Oxygen Compressor mainly used for hospital oxygen supplier center, to increase oxygen supply line pressure to the room, also can boost oxygen, and filling to the cylinder, such as 150bar, 200bar. Our High Pressure Oxygen Compressor can also be used in Industrial acetylene cutting, cutting steel scrap in steel factory, support boiler oxygen combustion recycle the cryogenic liquid oxygen tank vapor oxygen to the tank.

 

Company Business

♣ PSA On-site nitrogen generators
♣ General purpose nitrogen generators
♣ High purity nitrogen generators
♣ Membrane nitrogen generators
♣ Nitrogen purification equipment
♣ PSA oxygen gas plant
♣ Industrial oxygen plant
♣ Oxygen cylinder filling plant
♣ Medical oxygen generators
♣ Membrane oxygen generators
♣ Spare parts & consumables of nitrogen /oxygen generators
♣ Equipment selection and matching, technician training, installation and commissioning

We have an experienced professional team always ready to be at your service. The sales engineers carefully analyze your specified requirements and offer suitable solutions for you. The after-sale service system guarantees swift response to your problems within 24 hours and their resolutions in the shortest time. CHINAMFG is responsible for after-sales services to nitrogen/oxygen generators and other related equipment offered by us.
Cape-Golden is dedicated to supplying with our customers with more reliable, more economical and more convenient air separation solutions and professional service.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Hydrogen, Nitrogen, Oxygen, Ozone
Purpose: Gas Filling
Parts: Valve
Application Fields: Medical
Noise Level: Low
Machine Size: Medium
Samples:
US$ 8130/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can Gas Air Compressors Be Used for Well Drilling?

Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:

1. Air Drilling Method:

Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.

2. Benefits of Gas Air Compressors:

Gas air compressors offer several advantages for well drilling:

  • Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
  • Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
  • Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
  • Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.

3. Compressor Selection:

When selecting a gas air compressor for well drilling, several factors should be considered:

  • Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
  • Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
  • Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.

4. Safety Considerations:

It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.

5. Other Considerations:

While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.

In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.

air compressor

Can Gas Air Compressors Be Used for Sandblasting?

Yes, gas air compressors can be used for sandblasting. Sandblasting is a process that involves propelling abrasive materials, such as sand or grit, at high speeds to clean, etch, or prepare surfaces. Here’s a detailed explanation:

1. Compressed Air Requirement:

Sandblasting requires a reliable source of compressed air to propel the abrasive material. Gas air compressors, particularly those powered by gasoline or diesel engines, can provide the necessary compressed air for sandblasting operations. The compressors supply a continuous flow of compressed air at the required pressure to propel the abrasive material through the sandblasting equipment.

2. Portable and Versatile:

Gas air compressors are often portable and can be easily transported to different job sites, making them suitable for sandblasting applications in various locations. The portability of gas air compressors allows flexibility and convenience, especially when sandblasting needs to be performed on large structures, such as buildings, tanks, or bridges.

3. Pressure and Volume:

When selecting a gas air compressor for sandblasting, it is essential to consider the required pressure and volume of compressed air. Sandblasting typically requires higher pressures to effectively propel the abrasive material and achieve the desired surface treatment. Gas air compressors can provide higher pressure outputs compared to electric compressors, making them well-suited for sandblasting applications.

4. Compressor Size and Capacity:

The size and capacity of the gas air compressor should be chosen based on the specific requirements of the sandblasting project. Factors to consider include the size of the sandblasting equipment, the length of the air hose, and the desired duration of continuous operation. Selecting a gas air compressor with an appropriate tank size and airflow capacity ensures a consistent supply of compressed air during sandblasting.

5. Maintenance Considerations:

Regular maintenance is crucial for gas air compressors used in sandblasting applications. The abrasive nature of the sand or grit used in sandblasting can introduce particles into the compressor system, potentially causing wear or clogging. Regular inspection, cleaning, and maintenance of the compressor, including filters, valves, and hoses, help prevent damage and ensure optimal performance.

6. Safety Precautions:

When using gas air compressors for sandblasting, it is essential to follow appropriate safety precautions. Sandblasting generates airborne particles and dust, which can be hazardous if inhaled. Ensure proper ventilation, wear appropriate personal protective equipment (PPE), such as respiratory masks, goggles, and protective clothing, and follow recommended safety guidelines to protect the operator and others in the vicinity.

In summary, gas air compressors can be effectively used for sandblasting applications. They provide the necessary compressed air to propel abrasive materials, offer portability and versatility, and can deliver the required pressure and volume for efficient sandblasting operations. Proper compressor selection, maintenance, and adherence to safety precautions contribute to successful and safe sandblasting processes.

air compressor

What Fuels Are Commonly Used in Gas Air Compressors?

Gas air compressors can be powered by various fuels depending on the specific model and design. The choice of fuel depends on factors such as availability, cost, convenience, and environmental considerations. Here’s a detailed explanation of the fuels commonly used in gas air compressors:

1. Gasoline:

Gasoline is a widely used fuel in gas air compressors, particularly in portable models. Gasoline-powered compressors are popular due to the widespread availability of gasoline and the convenience of refueling. Gasoline engines are generally easy to start, and gasoline is relatively affordable in many regions. However, gasoline-powered compressors may emit more exhaust emissions compared to some other fuel options.

2. Diesel:

Diesel fuel is another common choice for gas air compressors, especially in larger industrial models. Diesel engines are known for their efficiency and durability, making them suitable for heavy-duty applications. Diesel fuel is often more cost-effective than gasoline, and diesel-powered compressors typically offer better fuel efficiency and longer runtime. Diesel compressors are commonly used in construction sites, mining operations, and other industrial settings.

3. Natural Gas:

Natural gas is a clean-burning fuel option for gas air compressors. It is a popular choice in areas where natural gas infrastructure is readily available. Natural gas compressors are often used in natural gas processing plants, pipeline operations, and other applications where natural gas is abundant. Natural gas-powered compressors offer lower emissions compared to gasoline or diesel, making them environmentally friendly.

4. Propane:

Propane, also known as liquefied petroleum gas (LPG), is commonly used as a fuel in gas air compressors. Propane-powered compressors are popular in construction, agriculture, and other industries where propane is used for various applications. Propane is stored in portable tanks, making it convenient for use in portable compressors. Propane-powered compressors are known for their clean combustion, low emissions, and easy availability.

5. Biogas:

In specific applications, gas air compressors can be fueled by biogas, which is produced from the decomposition of organic matter such as agricultural waste, food waste, or wastewater. Biogas compressors are used in biogas production facilities, landfills, and other settings where biogas is generated and utilized as a renewable energy source. The use of biogas as a fuel in compressors contributes to sustainability and reduces dependence on fossil fuels.

It’s important to note that the availability and suitability of these fuel options may vary depending on the region, infrastructure, and specific application requirements. When selecting a gas air compressor, it’s crucial to consider the compatibility of the compressor with the available fuel sources and to follow the manufacturer’s guidelines regarding fuel selection, storage, and safety precautions.

China wholesaler High Pressure Oxygen Compressor Medical Hospital Industrial Use   air compressor oilChina wholesaler High Pressure Oxygen Compressor Medical Hospital Industrial Use   air compressor oil
editor by CX 2024-04-09

China wholesaler Totally Oil-Free Medical/Industrial Oxygen Compressor Factory for Cylinder Filling air compressor parts

Product Description

Product Name Oil-Free Booster Compressor
Model No BW-3/5/10/15/20/30…
Inlet Pressure 0.4Mpa( G )
Exhaust Pressure 150/200Mpa( G )
Type High Pressure Oil Free
Accessories Filling Manifold, Piston ring, Etc

Oilless High Pressure O2 Compressor Specification
NO Volume Inlet pressure Outlet pressure Type Cooling type
1 1-3m³ 0.3-0.4MPa 15MPa 2 lines 4 stages vertical type Wind
2 4-12m³ 0.3-0.4MPa 15MPa 2 lines 4 stages vertical type Wind
3 13-40m³ 0.3-0.4MPa 15MPa 3 lines 3 stages W type Water
4 13-60m³ 0.2-0.4MPa 15MPa 2 lines 4 stages vertical type Water
5 40-80m³ 0.2-0.4MPa 15MPa 4 lines 4 stages S type Water
6 80-120m³ 0.2-0.4MPa 15MPa 4 lines 4 stages S type Water

If you have compressor inquiry please tell us follows information when you send inquiry:

*Compressor working medium: If single gas ,how many purity ? if mixed gas , what’s gas content lit ?

*Suction pressure(gauge pressure):_____bar

*Exhaust pressure(gauge pressure):_____bar

*Flow rate per hour for compressor: _____Nm³/h

Compressor gas suction temperature:_____ºC

Compressor working hours per day :_____hours

Compressor working site altitude :_____m

Environment temperature : _____ºC

Has cooling water in the site or not ?______

Voltage and frequency for 3 phase :____________

Do not has water vapor or H2S in the gas ?______

Application for compressor?__________

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Product Name: Oxygen,Nitrogen Compressor
Gas Type: Oxygen,Nitrogen,Special Gas
Cooling Method: Air Cooling Water Cooling
Application: Filling Cylinder
Customization:
Available

|

air compressor

What Is the Fuel Efficiency of Gas Air Compressors?

The fuel efficiency of gas air compressors can vary depending on several factors, including the compressor’s design, engine size, load capacity, and usage patterns. Gas air compressors typically use internal combustion engines powered by gasoline or propane to generate the mechanical energy required for compressing air. Here’s a detailed explanation of the factors that can influence the fuel efficiency of gas air compressors:

1. Engine Design and Size:

The design and size of the engine in a gas air compressor can impact its fuel efficiency. Engines with advanced technologies such as fuel injection and electronic controls tend to offer better fuel efficiency compared to older carbureted engines. Additionally, larger engines may consume more fuel to produce the required power, resulting in lower fuel efficiency compared to smaller engines for the same workload.

2. Load Capacity and Usage Patterns:

The load capacity and usage patterns of the gas air compressor play a significant role in fuel efficiency. Compressors operating at or near their maximum load capacity for extended periods may consume more fuel compared to compressors operating at lower loads. Additionally, compressors used intermittently or for lighter tasks may have better fuel efficiency due to reduced demand on the engine.

3. Maintenance and Tuning:

Proper maintenance and tuning of the gas air compressor’s engine can improve fuel efficiency. Regular maintenance tasks such as oil changes, air filter cleaning/replacement, spark plug inspection, and tuning the engine to the manufacturer’s specifications can help ensure optimal engine performance and fuel efficiency.

4. Operating Conditions:

The operating conditions, including ambient temperature, altitude, and humidity, can affect the fuel efficiency of gas air compressors. Extreme temperatures or high altitudes may require the engine to work harder, resulting in increased fuel consumption. Additionally, operating in humid conditions can affect the combustion process and potentially impact fuel efficiency.

5. Fuel Type:

The type of fuel used in the gas air compressor can influence its fuel efficiency. Gasoline and propane are common fuel choices for gas air compressors. The energy content and combustion characteristics of each fuel can affect the amount of fuel consumed per unit of work done. It is important to consider the specific fuel requirements and recommendations of the compressor manufacturer for optimal fuel efficiency.

6. Operator Skills and Practices:

The skills and practices of the operator can also impact fuel efficiency. Proper operation techniques, such as avoiding excessive idling, maintaining consistent engine speeds, and minimizing unnecessary load cycles, can contribute to improved fuel efficiency.

It is important to note that specific fuel efficiency ratings for gas air compressors can vary widely depending on the aforementioned factors. Manufacturers may provide estimated fuel consumption rates or fuel efficiency data for their specific compressor models, which can serve as a reference point when comparing different models or making purchasing decisions.

Ultimately, to maximize fuel efficiency, it is recommended to select a gas air compressor that suits the intended application, perform regular maintenance, follow the manufacturer’s guidelines, and operate the compressor efficiently based on the workload and conditions.

air compressor

Can Gas Air Compressors Be Used in Agriculture?

Yes, gas air compressors can be used in various agricultural applications. Here’s a detailed explanation:

1. Pneumatic Tools and Equipment:

Gas air compressors can power a wide range of pneumatic tools and equipment used in agriculture. These tools include pneumatic drills, impact wrenches, nail guns, staplers, and pneumatic pumps. Gas air compressors provide the necessary compressed air to operate these tools, making various tasks more efficient and convenient on the farm.

2. Irrigation Systems:

Gas air compressors can be used to power irrigation systems in agriculture. They can supply compressed air to operate pneumatic valves, which control the flow of water in irrigation networks. Gas air compressors ensure reliable and efficient operation of irrigation systems, facilitating the distribution of water to crops in a controlled manner.

3. Grain Handling and Storage:

Air compressors play a vital role in grain handling and storage facilities. They are used to power aeration systems that provide airflow to grains stored in silos or bins. Aeration helps control the temperature and moisture levels, preventing spoilage and maintaining grain quality. Gas air compressors provide the airflow necessary for effective aeration in grain storage operations.

4. Cleaning and Maintenance:

In agriculture, gas air compressors are commonly used for cleaning and maintenance tasks. They can power air blowers or air guns to remove dust, debris, or chaff from machinery, equipment, or storage areas. Gas air compressors provide a high-pressure stream of compressed air, facilitating efficient cleaning and maintenance operations.

5. Livestock Operations:

Gas air compressors find applications in livestock operations as well. They can power pneumatic equipment used for animal care, such as pneumatic nail guns for building or repairing livestock enclosures, pneumatic pumps for water distribution, or pneumatic tools for general maintenance tasks.

6. Portable and Versatile:

Gas air compressors are often portable and can be easily transported around the farm, allowing flexibility in agricultural operations. Their versatility makes them suitable for various tasks, from powering tools and equipment in the field to providing compressed air for maintenance or cleaning in different farm locations.

7. Remote Locations:

In agricultural settings where access to electricity may be limited, gas air compressors offer a reliable alternative. They can be powered by gasoline or diesel engines, providing compressed air even in remote areas without electrical infrastructure.

8. Considerations:

When using gas air compressors in agriculture, it is essential to consider factors such as compressor size, capacity, and maintenance requirements. Selecting the right compressor based on the specific needs of the agricultural applications ensures optimal performance and efficiency.

In summary, gas air compressors have various applications in agriculture. They can power pneumatic tools and equipment, operate irrigation systems, facilitate grain handling and storage, assist in cleaning and maintenance tasks, support livestock operations, and offer portability and versatility. Gas air compressors contribute to increased efficiency, convenience, and productivity in agricultural operations.

air compressor

How Do You Choose the Right Size Gas Air Compressor for Your Needs?

Choosing the right size gas air compressor is crucial to ensure optimal performance and efficiency for your specific needs. Selecting a compressor that is too small may result in insufficient airflow or pressure, while choosing one that is too large can lead to unnecessary energy consumption and higher costs. Here’s a detailed explanation of the factors to consider when choosing the right size gas air compressor:

1. Required Airflow:

Determine the airflow requirements of your applications. Consider the tools, equipment, or processes that will be powered by the compressor and their respective airflow demands. The required airflow is typically measured in cubic feet per minute (CFM). Determine the total CFM required, taking into account any simultaneous or intermittent tool usage.

2. Operating Pressure:

Identify the operating pressure required for your applications. Different tools and systems have specific pressure requirements, measured in pounds per square inch (PSI). Ensure that the compressor you choose can deliver the required pressure consistently.

3. Duty Cycle:

Consider the duty cycle, which refers to the amount of time the compressor will be in operation within a given period. Some applications may require continuous operation, while others involve intermittent or occasional use. Take into account the duty cycle to ensure that the compressor can handle the expected workload without overheating or experiencing excessive wear.

4. Tank Size:

The tank size of a gas air compressor determines its ability to store compressed air and provide a steady supply. A larger tank can help accommodate fluctuations in demand and reduce the frequency of the compressor cycling on and off. Consider the required storage capacity based on the specific applications and the desired balance between continuous operation and storage capacity.

5. Power Source:

Gas air compressors can be powered by different fuels, such as gasoline, diesel, natural gas, or propane. Consider the availability and cost of the fuel options in your location, as well as the specific requirements of your applications. Choose a compressor that is compatible with a power source that suits your needs.

6. Portability:

Determine if portability is a requirement for your applications. If you need to move the compressor to different job sites or locations, consider a portable model with features like wheels, handles, or a compact design that facilitates easy transportation.

7. Noise Level:

If noise is a concern in your working environment, consider the noise level of the compressor. Gas air compressors can vary in their noise output, and certain models may have noise-reducing features or insulation to minimize sound emissions.

8. Manufacturer Recommendations:

Consult the manufacturer’s recommendations and guidelines for selecting the appropriate compressor size for your specific needs. Manufacturers often provide guidelines based on the anticipated applications, airflow requirements, and other factors to help you make an informed decision.

By considering these factors and carefully assessing your specific requirements, you can choose the right size gas air compressor that meets your airflow, pressure, duty cycle, and other operational needs. It’s advisable to consult with industry professionals or compressor experts for guidance, especially for complex or specialized applications.

China wholesaler Totally Oil-Free Medical/Industrial Oxygen Compressor Factory for Cylinder Filling   air compressor partsChina wholesaler Totally Oil-Free Medical/Industrial Oxygen Compressor Factory for Cylinder Filling   air compressor parts
editor by CX 2024-02-28

China high quality Factory Price Full Oil-Free Nitrogen Oxygen Gas Compressor air compressor parts

Product Description

Product Name

Oil Free Gas Compressor

Power Range

<55KW

Model No.

GWX- 5/10/20/40/60/80/CUSTOMIZED

Cooling Method

Air-cooled or Water-cooled

Speed Range

300-600r/min

Compression Stages

Level 3-4

Exhaust Pressure Range

≤25.0Mpa

Inspiratory Pressure Range

0-0.6Mpa

Technical features
The equipment does not need to add lubricating oil, and the exhaust gas does not contain oil and oil vapor, so it can
be protected from pollution, eliminating the need for complex filtration and purification systems, saving equipment
costs and maintenance costs, and has significant features such as safety, reliability, and easy operation.
Technical features

Details Images
FAQ

Q1: Are you a trading company or manufacturer?

A:We are a manufacturer.

Q2: What is your term of payment?
A: 30%T/T in advance and balance before shipment.
Q3: How long is your delivery time?

A: Depending on what type of machine you are purchased, normally 5 to 10 working days.

Q4: What is your product quality assurance policy? A:We offer a warranty period of 1 year, free lifetime technology support.

Q5: Do you offer OEM/ODM service?

A: Yes.

Q6: Does your product used or new? RTS product or customized product?

A:Our machine is new unit, and following your specific require to design and make it.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Support
Warranty: 1year
Lubrication Style: Oil-less
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

Can Gas Air Compressors Be Used in Construction Projects?

Gas air compressors are widely used in construction projects due to their portability, versatility, and ability to provide the necessary compressed air for various applications. They are an essential tool in the construction industry, enabling the efficient and effective operation of pneumatic tools and equipment. Here’s a detailed explanation of how gas air compressors are used in construction projects:

1. Powering Pneumatic Tools:

Gas air compressors are commonly used to power a wide range of pneumatic tools on construction sites. These tools include jackhammers, nail guns, impact wrenches, concrete breakers, air drills, sanders, grinders, and paint sprayers. The compressed air generated by the gas air compressor provides the necessary force and power for efficient operation of these tools, enabling tasks such as concrete demolition, fastening, surface preparation, and finishing.

2. Air Blow and Cleaning Operations:

In construction projects, there is often a need to clean debris, dust, and dirt from work areas, equipment, and surfaces. Gas air compressors are used to generate high-pressure air for air blow and cleaning operations. This helps maintain cleanliness, remove loose materials, and prepare surfaces for further work, such as painting or coating.

3. Operating Pneumatic Systems:

Gas air compressors are employed to operate various pneumatic systems in construction projects. These systems include pneumatic control devices, pneumatic cylinders, and pneumatic actuators. Compressed air from the gas air compressor is used to control the movement of equipment, such as gates, doors, and barriers, as well as to operate pneumatic lifts, hoists, and other lifting mechanisms.

4. Concrete Spraying and Shotcreting:

Gas air compressors are utilized in concrete spraying and shotcreting applications. Compressed air is used to propel the concrete mixture through a nozzle at high velocity, ensuring proper adhesion and distribution on surfaces. This technique is commonly employed in applications such as tunnel construction, slope stabilization, and repair of concrete structures.

5. Sandblasting and Surface Preparation:

In construction projects that require surface preparation, such as removing old paint, rust, or coatings, gas air compressors are often used in conjunction with sandblasting equipment. Compressed air powers the sandblasting process, propelling abrasive materials such as sand or grit onto the surface to achieve effective cleaning and preparation before applying new coatings or finishes.

6. Tire Inflation and Equipment Maintenance:

Gas air compressors are utilized for tire inflation and equipment maintenance on construction sites. They provide compressed air for inflating and maintaining proper tire pressure in construction vehicles and equipment. Additionally, gas air compressors are used for general equipment maintenance, such as cleaning, lubrication, and powering pneumatic tools for repair and maintenance tasks.

7. Portable and Remote Operations:

Gas air compressors are particularly beneficial in construction projects where electricity may not be readily available or feasible. Portable gas air compressors provide the flexibility to operate in remote locations, allowing construction crews to utilize pneumatic tools and equipment without relying on a fixed power source.

Gas air compressors are an integral part of construction projects, facilitating a wide range of tasks and enhancing productivity. Their ability to power pneumatic tools, operate pneumatic systems, and provide compressed air for various applications makes them essential equipment in the construction industry.

air compressor

Can Gas Air Compressors Be Used for Pneumatic Tools?

Yes, gas air compressors can be used for pneumatic tools. Here’s a detailed explanation:

1. Versatile Power Source:

Gas air compressors, powered by gasoline or diesel engines, provide a portable and versatile power source for operating pneumatic tools. They eliminate the need for electrical power supply, making them suitable for remote locations or construction sites where electricity may not be readily available.

2. High Power Output:

Gas air compressors typically offer higher power output compared to electric compressors of similar size. This high power output enables gas compressors to deliver the necessary air pressure and volume required by pneumatic tools, ensuring optimal tool performance.

3. Mobility and Portability:

Gas air compressors are often designed with mobility and portability in mind. They are compact and equipped with wheels or handles, allowing for easy transportation to different job sites. This mobility is advantageous when using pneumatic tools in various locations or when working in confined spaces.

4. Continuous Operation:

Gas air compressors can provide continuous air supply for pneumatic tools without the need for frequent pauses or recharging. As long as there is an adequate fuel supply, gas compressors can operate for extended periods, allowing uninterrupted use of pneumatic tools for tasks such as drilling, nailing, sanding, or painting.

5. Suitable for High-Demand Applications:

Pneumatic tools used in heavy-duty applications often require a robust air supply to meet their performance requirements. Gas air compressors can generate higher air flow rates and maintain higher operating pressures, making them suitable for high-demand pneumatic tools like jackhammers, impact wrenches, or sandblasters.

6. Flexibility in Compressor Size:

Gas air compressors are available in various sizes and capacities, allowing users to choose the compressor that best matches the air demands of their pneumatic tools. From small portable compressors for light-duty tasks to larger industrial-grade compressors for heavy-duty applications, there is a wide range of options to suit different tool requirements.

7. Reduced Dependency on Electrical Infrastructure:

Using gas air compressors for pneumatic tools reduces reliance on electrical infrastructure. In situations where the electrical power supply is limited, unreliable, or expensive, gas compressors offer a viable alternative, ensuring consistent tool performance without concerns about power availability.

It’s important to note that gas air compressors emit exhaust gases during operation, so proper ventilation is necessary when using them in enclosed spaces to ensure the safety of workers.

In summary, gas air compressors can effectively power pneumatic tools, offering mobility, high power output, continuous operation, and suitability for various applications. They provide a reliable and portable solution for utilizing pneumatic tools in locations where electrical power supply may be limited or unavailable.

air compressor

What Are the Primary Applications of Gas Air Compressors?

Gas air compressors have a wide range of applications across various industries and activities. These compressors, powered by gas engines, provide a portable and versatile source of compressed air. Here’s a detailed explanation of the primary applications of gas air compressors:

1. Construction Industry:

Gas air compressors are extensively used in the construction industry. They power a variety of pneumatic tools and equipment, such as jackhammers, nail guns, impact wrenches, and concrete breakers. The portable nature of gas air compressors makes them ideal for construction sites where electricity may not be readily available or practical to use.

2. Agriculture and Farming:

Gas air compressors find applications in the agricultural sector. They are used to operate air-powered machinery and tools, including pneumatic seeders, sprayers, and agricultural pumps. Gas air compressors provide the necessary power to carry out tasks such as crop seeding, irrigation, and pest control in agricultural settings.

3. Recreational Activities:

Gas air compressors are commonly utilized in recreational activities. They are used to inflate tires, sports balls, inflatable structures, and recreational equipment such as air mattresses, rafts, and inflatable toys. Gas air compressors provide a convenient and portable solution for inflating various recreational items in outdoor settings.

4. Mobile Service Operations:

Gas air compressors are employed in mobile service operations, such as mobile mechanics, tire service providers, and mobile equipment repair services. These compressors power air tools and equipment required for on-site repairs, maintenance, and servicing of vehicles, machinery, and equipment. The mobility of gas air compressors allows service providers to bring their tools and compressed air source directly to the location of the service requirement.

5. Remote Job Sites:

Gas air compressors are well-suited for remote job sites or locations without access to electricity. They are commonly used in industries such as mining, oil and gas exploration, and remote construction projects. Gas air compressors power pneumatic tools, machinery, and drilling equipment in these environments, providing a reliable source of compressed air for operational needs.

6. Emergency and Backup Power:

In emergency situations or during power outages, gas air compressors can serve as a backup power source. They can power essential equipment and systems that rely on compressed air, such as emergency lighting, communication devices, medical equipment, and backup generators. Gas air compressors provide a reliable alternative power solution when electrical power is unavailable or unreliable.

7. Sandblasting and Surface Preparation:

Gas air compressors are used in sandblasting and surface preparation applications. They provide the high-pressure air necessary for propelling abrasive media, such as sand or grit, to remove paint, rust, or other coatings from surfaces. Gas air compressors offer the power and portability required for sandblasting operations in various industries, including automotive, metal fabrication, and industrial maintenance.

8. Off-Road and Outdoor Equipment:

Gas air compressors are commonly integrated into off-road and outdoor equipment, such as off-road vehicles, utility trucks, and recreational vehicles. They power air-operated systems, including air suspension systems, air brakes, air lockers, and air horns. Gas air compressors provide the necessary compressed air for reliable and efficient operation of these systems in rugged and outdoor environments.

Overall, gas air compressors have diverse applications in construction, agriculture, recreational activities, mobile service operations, remote job sites, emergency power backup, sandblasting, and various off-road and outdoor equipment. Their portability, versatility, and reliable power supply make them indispensable tools in numerous industries and activities.

China high quality Factory Price Full Oil-Free Nitrogen Oxygen Gas Compressor   air compressor partsChina high quality Factory Price Full Oil-Free Nitrogen Oxygen Gas Compressor   air compressor parts
editor by CX 2024-02-21

China Custom Bw Oil Free Oxygen Booster 5-200nm3 O2 Compressor for Medical Use mini air compressor

Product Description

Product Name Oil-Free Booster Compressor
Model No BW-3/5/10/15/20/30…
Inlet Pressure 0.4Mpa( G )
Exhaust Pressure 150/200Mpa( G )
Type High Pressure Oil Free
Accessories Filling Manifold, Piston ring, Etc

If you have compressor inquiry please tell us follows information when you send inquiry:

*Compressor working medium: If single gas ,how many purity ? if mixed gas , what’s gas content lit ?

*Suction pressure(gauge pressure):_____bar

*Exhaust pressure(gauge pressure):_____bar

*Flow rate per hour for compressor: _____Nm³/h

Compressor gas suction temperature:_____ºC

Compressor working hours per day :_____hours

Compressor working site altitude :_____m

Environment temperature : _____ºC

Has cooling water in the site or not ?______

Voltage and frequency for 3 phase :____________

Do not has water vapor or H2S in the gas ?______

Application for compressor?__________

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1year
Warranty: 1year
Product Name: Oxygen,Nitrogen Compressor
Gas Type: Oxygen,Nitrogen,Special Gas
Cooling Method: Air Cooling Water Cooling
Application: Filling Cylinder
Customization:
Available

|

air compressor

Can Gas Air Compressors Be Used for Well Drilling?

Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:

1. Air Drilling Method:

Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.

2. Benefits of Gas Air Compressors:

Gas air compressors offer several advantages for well drilling:

  • Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
  • Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
  • Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
  • Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.

3. Compressor Selection:

When selecting a gas air compressor for well drilling, several factors should be considered:

  • Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
  • Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
  • Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.

4. Safety Considerations:

It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.

5. Other Considerations:

While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.

In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.

air compressor

Can Gas Air Compressors Be Used for Natural Gas Compression?

Gas air compressors are not typically used for natural gas compression. Here’s a detailed explanation:

1. Different Compressed Gases:

Gas air compressors are specifically designed to compress atmospheric air. They are not typically designed or suitable for compressing natural gas. Natural gas, which is primarily composed of methane, requires specialized compressors designed to handle the unique properties and characteristics of the gas.

2. Safety Considerations:

Natural gas compression involves handling a flammable and potentially hazardous substance. Compressing natural gas requires specialized equipment that meets stringent safety standards to prevent leaks, minimize the risk of ignition or explosion, and ensure the safe handling of the gas. Gas air compressors may not have the necessary safety features or materials to handle natural gas safely.

3. Equipment Compatibility:

Natural gas compression systems typically include components such as gas compressors, gas coolers, separators, and control systems that are specifically designed and engineered for the compression and handling of natural gas. These components are built to withstand the specific demands and conditions associated with natural gas compression, including the high pressures and potential presence of impurities.

4. Efficiency and Performance:

Compressing natural gas requires specialized compressors that can handle the high-pressure ratios and volumetric flow rates associated with the gas. Gas air compressors are generally not designed to achieve the same compression ratios and performance levels required for natural gas compression. Using gas air compressors for natural gas compression would likely result in inefficient operation and suboptimal performance.

5. Regulatory Compliance:

Compressing natural gas is subject to various regulations and standards to ensure safety, environmental protection, and compliance with industry guidelines. These regulations often dictate specific requirements for equipment, materials, and operating procedures in natural gas compression systems. Gas air compressors may not meet these regulatory requirements for natural gas compression.

6. Industry Standards and Practices:

The natural gas industry has well-established standards and best practices for equipment selection, installation, and operation in gas compression systems. These standards are based on the specific requirements and characteristics of natural gas. Gas air compressors do not align with these industry standards and practices, which are essential for safe and efficient natural gas compression.

In summary, gas air compressors are not suitable for natural gas compression. Natural gas compression requires specialized equipment designed to handle the unique properties and safety considerations associated with the gas. Compressors specifically engineered for natural gas compression offer the necessary performance, safety features, and regulatory compliance required for efficient and reliable operation in natural gas compression systems.

air compressor

What Are the Primary Applications of Gas Air Compressors?

Gas air compressors have a wide range of applications across various industries and activities. These compressors, powered by gas engines, provide a portable and versatile source of compressed air. Here’s a detailed explanation of the primary applications of gas air compressors:

1. Construction Industry:

Gas air compressors are extensively used in the construction industry. They power a variety of pneumatic tools and equipment, such as jackhammers, nail guns, impact wrenches, and concrete breakers. The portable nature of gas air compressors makes them ideal for construction sites where electricity may not be readily available or practical to use.

2. Agriculture and Farming:

Gas air compressors find applications in the agricultural sector. They are used to operate air-powered machinery and tools, including pneumatic seeders, sprayers, and agricultural pumps. Gas air compressors provide the necessary power to carry out tasks such as crop seeding, irrigation, and pest control in agricultural settings.

3. Recreational Activities:

Gas air compressors are commonly utilized in recreational activities. They are used to inflate tires, sports balls, inflatable structures, and recreational equipment such as air mattresses, rafts, and inflatable toys. Gas air compressors provide a convenient and portable solution for inflating various recreational items in outdoor settings.

4. Mobile Service Operations:

Gas air compressors are employed in mobile service operations, such as mobile mechanics, tire service providers, and mobile equipment repair services. These compressors power air tools and equipment required for on-site repairs, maintenance, and servicing of vehicles, machinery, and equipment. The mobility of gas air compressors allows service providers to bring their tools and compressed air source directly to the location of the service requirement.

5. Remote Job Sites:

Gas air compressors are well-suited for remote job sites or locations without access to electricity. They are commonly used in industries such as mining, oil and gas exploration, and remote construction projects. Gas air compressors power pneumatic tools, machinery, and drilling equipment in these environments, providing a reliable source of compressed air for operational needs.

6. Emergency and Backup Power:

In emergency situations or during power outages, gas air compressors can serve as a backup power source. They can power essential equipment and systems that rely on compressed air, such as emergency lighting, communication devices, medical equipment, and backup generators. Gas air compressors provide a reliable alternative power solution when electrical power is unavailable or unreliable.

7. Sandblasting and Surface Preparation:

Gas air compressors are used in sandblasting and surface preparation applications. They provide the high-pressure air necessary for propelling abrasive media, such as sand or grit, to remove paint, rust, or other coatings from surfaces. Gas air compressors offer the power and portability required for sandblasting operations in various industries, including automotive, metal fabrication, and industrial maintenance.

8. Off-Road and Outdoor Equipment:

Gas air compressors are commonly integrated into off-road and outdoor equipment, such as off-road vehicles, utility trucks, and recreational vehicles. They power air-operated systems, including air suspension systems, air brakes, air lockers, and air horns. Gas air compressors provide the necessary compressed air for reliable and efficient operation of these systems in rugged and outdoor environments.

Overall, gas air compressors have diverse applications in construction, agriculture, recreational activities, mobile service operations, remote job sites, emergency power backup, sandblasting, and various off-road and outdoor equipment. Their portability, versatility, and reliable power supply make them indispensable tools in numerous industries and activities.

China Custom Bw Oil Free Oxygen Booster 5-200nm3 O2 Compressor for Medical Use   mini air compressorChina Custom Bw Oil Free Oxygen Booster 5-200nm3 O2 Compressor for Medical Use   mini air compressor
editor by CX 2024-02-18

China Custom Oxygen Gas Hydrogen Gas Helium Gas Middle High Pressure 30bar Air Gas Piston Compressor air compressor parts

Product Description

Inquiry to us!
Note:for the other customizing process gas compressor, please kindly send below information to our factory to calculate the producing cost for your item.
 Clients’ inquiries should contain related parameters 
A. The gas compression medium 
B. Gas composition? or the gas purity?
C. The flow rate: _____Nm3/hr
D. Inlet pressure: _____ Bar (gauge pressure or absolute pressure)
E. Discharge pressure: _____ Bar (gauge pressure or absolute pressure)
F. Inlet temperature
G.Discharge temperature
H. Cooling water temperature as well as other technical requirement.

The Oil-free piston booster compressor is widely used in oxygen industry such as air separation oxygen plant and medical industry.

Technical Paramter of Oil Free Piston Oxygen Gas Booster Compressor

Model Flow rate Suction Pressure Discharge Pressure Motor Power Dimension Interface diameter
Nm3/h MPa MPa KW mm×mm×mm  
ZWZ-5/1.5-10 5 0.15 1 1.5 1000×500×700 Rc 1/2′
VWZ-10/1.5-10 10 0.15 1 2.2 1000×500×700 Rc 1′
VWZ-15/1.5-10 15 0.15 1 3 1000×500×700 Rc 1′
WWZ-20/1.5-10 20 0.15 1 4 1200×650×800 Rc 1′
WWZ-25/1.5-10 25 0.15 1 5.5 1200×650×800 Rc 1′
WWZ-30/1.5-10 30 0.15 1 5.5 1200×650×800 Rc 1′
WWZ-50/1.5-10 50 0.15 1 7.5 1200×650×800 Rc 1′
ZWZ-5/4-14 5 0.4 1.4 1.5 1000×500×700 Rc 1/2′
ZWZ-10/4-14 10 0.4 1.4 2.2 1000×500×700 Rc 1′
ZWZ-15/4-14 15 0.4 1.4 2.2 1000×500×700 Rc 1′
VWZ-20/4-14 20 0.4 1.4 3 1200×650×800 Rc 1′
VWZ-25/4-14 25 0.4 1.4 4 1200×650×800 Rc 1′
VWZ-30/4-14 30 0.4 1.4 5.5 1200×650×800 Rc 1′
WWZ-50/4-14 50 0.4 1.4 7.5 1200×650×800 Rc 1′

Recommend the another Oil free Diphragm Compressor

The diaphragm compressor booster is a special structure of the volume-type compressor with high compression ratio, good leak tightness, compressed gas without lubricating oil and other CHINAMFG impurities contaminated features, So it’s suitable for high purity compression, rare, valuable, inflammable, explosive, toxic, harmful, corrosive, and high pressure gas.

Keepwin produced Helium compressor, Oxygen Compressor, Hydrogen Compressor, Nitrogen Compressor, Recovery H2 Gas compressor, Argon compressor, cylinder filling booster compressor, etc widely used in  Petrochemicals, Fine ChemicalsPharmaceutical ChemicalsEnergy ChemicalsMachinery IndustryElectronics IndustryAgricultureAnimal Husbandry and  Defense Industry, AstronomyAerospace,  Medical and other fields.
.
Advantages of Diaphragm compressor:
1.  Oil-free compression due to the hermetic separation between gas and oil chamber.
2.  Abrasion-free compression due to static seals in the gas stream
3.   Automatic shutdown in case of a diaphragm failure prevents damage
4.  High Compression Ratios- Discharge pressure up to 1000bar (14500 psig).
5.   Contamination Free Compression
6.  Corrosion Resistance
7.  High Reliability

As a displacement compressor with special,diaphragm compressor is characterized by large compression ratio, good sealing performace,and that the compress air will not be polluted by lubricant or other CHINAMFG impurities.Therefore diaphragm compressor is applicable to compress high-purity, rare and precious,flammable and explosive,toxic and hazardous,corrosive and high pressure gases.
Keepwin diaghragm compressors consist of 4 types that are Z,V,L and D type.The exhaust pressure ranges from 1.3 to 100 Mpa. The products are widely used in the industries of national defense,scientific research, petrochemical, nuclear power, parmaceutical, food-stuff and gas separation.

We offer a wide variety and types of diaphragm compressors. You can install these in many different scenarios. It is possible to install the compressors in hydrogen houses between and  electrolyzer and a storage system, in businesses to support their needs such as ice cream companies for hydrogenation, at farmers where they use it to produce ammonia or as a fuel at the back of a wind farm or solar farm, and refineries to pressurise the hydrogen before it is being used to clean up the gas or oil. There are also many applications for our H2 gas compressors.

For instance, you can also use the diaphragm compressor in green hydrogen transport applications, energy storage solutions, grid balancing, food processing, and power station cooling. We pride ourselves at ensuring that as many applications of our compressor units use renewable electricity to pressure the hydrogen.

Each of our H2 compressor units is unique. It is built to your needs all with the latest innovations in hydrogen compression, safety, and operation. We offer different hydrogen flow and pressures all set to match your storage working pressure.

We can customize hydrogen into different types of storage systems at 150bar 200 bar, 350 bar (5000 psi), 450 bar, 500 bar, 700 bar (10,000 psi), 900 bar (13,000 psi).

Main technical data

Cylinder 
All the cylinders comprise upper plate, diaphragms, and cylinder body etc. The diaphragms are clamped between the cylinder cover and cylinder body. The cylinder cover and cylinder body each has a  concave recess hollowed out in their contacting faces. The gas cylinder is formed between cylinder cover concave recess and diaphragms. Both suction valve and discharge valve are fitted on the upper plate. Among of them, the discharge valve is located on the center of the upper plate. The evenly located small oil holes are on the cylinder body to deliver the oil pressure inside the oil cylinder to the bottom of diaphragms (each diaphragm compressor’s cylinder has 3 piece diaphragm.) 

Pressure Regulating Valve 
The oil pressure of oil cylinder is regulated by the tension of the valve spring.In case the oil pressure is higher than the regulated value, turn the regulating bolt counter-clockwise to loosen the spring tension, but turn the regulating bolt clockwise to tighten the spring, when the oil pressure is lower than the regulated value. When the oil pressure meets the required value, the regulating bolt must be locked with a lock-nut. The oil pressure of the oil cylinder shall always be higher than the discharge pressure by 15~20%. But the oil and gas differential pressure shall not be lower than 0.3MPa or higher than 1.5MPa. 

Cooler
The cooler structure is the double-wall pipe type. The circular space between the outer and inner pipe is the cooling water passage and the inner pipe is the gas passage. Normally the water inlet port is at the lower side and the water outlet port is at the upper side. The flow direction of cooling water and gas is on the contrary.

Oil Pressure Measuring Device 
The measuring device of oil cylinder discharge pressure consists of shock-proof pressure gauge, check valve and unloading valve. The case of the pressure gauge is totally airproof and filled with damping liquid. The inner devices of gauge is immersed in the liquid, which makes the pressure gauge hands stable through the function of the viscosity of damping liquid. The unloading valve is fitted under the gauge to discharge the remained air in the oil pipeline   and to unload the oil pressure gauge. Also the check valve connecting with oil cylinder through pipeline is fitted under the unloading valve.   

Oil pipes 
Oil pipes consist of lube oil pipe and oil pressure secure system.

The lubrication for the driving device adopts gear oil pump circulation pressure lubricating. The lube oil stored in the frame oil tank enters into the gear oil pump after being filtered and is pressed into the oil holes in the crankshaft through the gear oil pump to lubricate the crankshaft friction surface. At the same time, part of the lube oil reaches the crosshead pin and crosshead along the oil holes in the connecting rod to lubricate the friction surface. The oil pressure of gear oil pump shall be kept between 0.3~0.5Mpa, and the bearings at the 2 ends of crankshaft is splash lubricated. 
Oil pressure secure system consists of oil compensating pipe, pressure-measuring pipe and oil return pipe. The oil output from the oil compensating pump will supplement oil for compressor cylinders through the oil compensating pipe and the excess oil returns to the crankcase through the pressure-regulating valve.

FAQ
Q1: What’s your delivery time?
A: Generally 5-10 days if the goods are in stock. Or it is 20-35 days if the goods are not in stock, it is according to quantity.

Q2: How long is your air compressor warranty?
A: Usually 1 year /12 Months for whole compressor machine, 2years/24months for air end (except maintenance spare parts.). And we can provide further warranty if necessary. 

Q3: How long could your air compressor be used?
A: Generally, more than 10 years.

Q4: Can you do OEM for us?
A: Yes, of course. We have around 2 decades OEM experience.And also we can do ODM for you.

Q5: What’s payment term?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, Trade Assurance and etc. Also we could accept USD, RMB, GBP, Euro and other currency.

Q6: How about your customer service?
A: 24 hours on-line service available. 48hours problem sovled promise.

Q7: How about your after-sales service?
A: 1. Provide customers with intallation and commissioning online instructions.
2. Well-trained engineers available to overseas after-sales service. 

Q8. Are you factory?
A4: Absolutely! You have touched the primary sources of Air /Gas Compressor. We are factory.

How to contact with us?
Send your Inquiry Details in the Below, or Click “Send inquiry to supplier” to check more other Gas Compressor machine equipment!

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Angular
Structure Type: Closed Type
Compress Level: Double-Stage
Samples:
US$ 1880/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What Is the Fuel Efficiency of Gas Air Compressors?

The fuel efficiency of gas air compressors can vary depending on several factors, including the compressor’s design, engine size, load capacity, and usage patterns. Gas air compressors typically use internal combustion engines powered by gasoline or propane to generate the mechanical energy required for compressing air. Here’s a detailed explanation of the factors that can influence the fuel efficiency of gas air compressors:

1. Engine Design and Size:

The design and size of the engine in a gas air compressor can impact its fuel efficiency. Engines with advanced technologies such as fuel injection and electronic controls tend to offer better fuel efficiency compared to older carbureted engines. Additionally, larger engines may consume more fuel to produce the required power, resulting in lower fuel efficiency compared to smaller engines for the same workload.

2. Load Capacity and Usage Patterns:

The load capacity and usage patterns of the gas air compressor play a significant role in fuel efficiency. Compressors operating at or near their maximum load capacity for extended periods may consume more fuel compared to compressors operating at lower loads. Additionally, compressors used intermittently or for lighter tasks may have better fuel efficiency due to reduced demand on the engine.

3. Maintenance and Tuning:

Proper maintenance and tuning of the gas air compressor’s engine can improve fuel efficiency. Regular maintenance tasks such as oil changes, air filter cleaning/replacement, spark plug inspection, and tuning the engine to the manufacturer’s specifications can help ensure optimal engine performance and fuel efficiency.

4. Operating Conditions:

The operating conditions, including ambient temperature, altitude, and humidity, can affect the fuel efficiency of gas air compressors. Extreme temperatures or high altitudes may require the engine to work harder, resulting in increased fuel consumption. Additionally, operating in humid conditions can affect the combustion process and potentially impact fuel efficiency.

5. Fuel Type:

The type of fuel used in the gas air compressor can influence its fuel efficiency. Gasoline and propane are common fuel choices for gas air compressors. The energy content and combustion characteristics of each fuel can affect the amount of fuel consumed per unit of work done. It is important to consider the specific fuel requirements and recommendations of the compressor manufacturer for optimal fuel efficiency.

6. Operator Skills and Practices:

The skills and practices of the operator can also impact fuel efficiency. Proper operation techniques, such as avoiding excessive idling, maintaining consistent engine speeds, and minimizing unnecessary load cycles, can contribute to improved fuel efficiency.

It is important to note that specific fuel efficiency ratings for gas air compressors can vary widely depending on the aforementioned factors. Manufacturers may provide estimated fuel consumption rates or fuel efficiency data for their specific compressor models, which can serve as a reference point when comparing different models or making purchasing decisions.

Ultimately, to maximize fuel efficiency, it is recommended to select a gas air compressor that suits the intended application, perform regular maintenance, follow the manufacturer’s guidelines, and operate the compressor efficiently based on the workload and conditions.

air compressor

What Is the Role of Air Receivers in Gas Air Compressor Systems?

Air receivers play a crucial role in gas air compressor systems by serving as storage tanks for compressed air. Here’s a detailed explanation:

1. Storage and Stabilization:

The primary function of an air receiver is to store compressed air generated by the gas air compressor. As the compressor produces compressed air, the air receiver collects and stores it. This storage capacity helps meet fluctuating demand in compressed air usage, providing a buffer between the compressor and the system’s air consumption.

By storing compressed air, the air receiver helps stabilize the supply to the system, reducing pressure fluctuations and ensuring a consistent and reliable flow of compressed air. This is particularly important in applications where the demand for compressed air may vary or experience peaks and valleys.

2. Pressure Regulation:

Another role of the air receiver is to assist in pressure regulation within the gas air compressor system. As compressed air enters the receiver, the pressure inside increases. When the pressure reaches a predetermined upper limit, typically set by a pressure switch or regulator, the compressor stops supplying air, and the excess air is stored in the receiver.

Conversely, when the pressure in the system drops below a certain lower limit, the pressure switch or regulator signals the compressor to start, replenishing the compressed air in the receiver and maintaining the desired pressure level. This cycling of the compressor based on pressure levels helps regulate and control the overall system pressure.

3. Condensate Separation:

During the compression process, moisture or condensate can form in the compressed air due to the cooling effect. The air receiver acts as a reservoir that allows the condensate to settle at the bottom, away from the outlet. The receiver often includes a drain valve at the bottom to facilitate the removal of accumulated condensate, preventing it from reaching downstream equipment and causing potential damage or performance issues.

4. Energy Efficiency:

Air receivers contribute to energy efficiency in gas air compressor systems. They help optimize the operation of the compressor by reducing the occurrence of short-cycling, which refers to frequent on-off cycling of the compressor due to rapid pressure changes. Short-cycling can cause excessive wear on the compressor and reduce its overall efficiency.

The presence of an air receiver allows the compressor to operate in longer and more efficient cycles. The compressor runs until the receiver reaches the upper pressure limit, ensuring a more stable and energy-efficient operation.

5. Air Quality Improvement:

Depending on the design, air receivers can also aid in improving air quality in the compressed air system. They provide a space for the compressed air to cool down, allowing moisture and some contaminants to condense and separate from the air. This can be further enhanced with the use of additional filtration and drying equipment installed downstream of the receiver.

In summary, air receivers play a vital role in gas air compressor systems by providing storage capacity, stabilizing compressed air supply, regulating system pressure, separating condensate, improving energy efficiency, and contributing to air quality control. They are an integral component in ensuring the reliable and efficient operation of compressed air systems across various industries and applications.

air compressor

Can Gas Air Compressors Be Used in Remote Locations?

Yes, gas air compressors are well-suited for use in remote locations where access to electricity may be limited or unavailable. Their portability and reliance on gas engines make them an ideal choice for providing a reliable source of compressed air in such environments. Here’s a detailed explanation of how gas air compressors can be used in remote locations:

1. Independence from Electrical Grid:

Gas air compressors do not require a direct connection to the electrical grid, unlike electric air compressors. This independence from the electrical grid allows gas air compressors to be used in remote locations, such as wilderness areas, remote job sites, or off-grid locations, where it may be impractical or cost-prohibitive to establish electrical infrastructure.

2. Mobility and Portability:

Gas air compressors are designed to be portable and easy to transport. They are often equipped with handles, wheels, or trailers, making them suitable for remote locations. The gas engine powering the compressor provides mobility, allowing the compressor to be moved to different areas within the remote location as needed.

3. Fuel Versatility:

Gas air compressors can be fueled by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This fuel versatility ensures that gas air compressors can adapt to the available fuel sources in remote locations. For example, if gasoline or diesel is readily available, the gas air compressor can be fueled with these fuels. Similarly, if natural gas or propane is accessible, the compressor can be configured to run on these gases.

4. On-Site Power Generation:

In remote locations where electricity is limited, gas air compressors can serve as on-site power generators. They can power not only the compressor itself but also other equipment or tools that require electricity for operation. This versatility makes gas air compressors useful for a wide range of applications in remote locations, such as powering lights, tools, communication devices, or small appliances.

5. Off-Grid Operations:

Gas air compressors enable off-grid operations, allowing tasks and activities to be carried out in remote locations without relying on external power sources. This is particularly valuable in industries such as mining, oil and gas exploration, forestry, or construction, where operations may take place in remote and isolated areas. Gas air compressors provide the necessary compressed air for pneumatic tools, drilling equipment, and other machinery required for these operations.

6. Emergency Preparedness:

Gas air compressors are also beneficial for emergency preparedness in remote locations. In situations where natural disasters or emergencies disrupt the power supply, gas air compressors can provide a reliable source of compressed air for essential equipment and systems. They can power emergency lighting, communication devices, medical equipment, or backup generators, ensuring operational continuity in critical situations.

7. Adaptability to Challenging Environments:

Gas air compressors are designed to withstand various environmental conditions, including extreme temperatures, humidity, dust, and vibrations. This adaptability to challenging environments makes them suitable for use in remote locations, where environmental conditions may be harsh or unpredictable.

Overall, gas air compressors can be effectively used in remote locations due to their independence from the electrical grid, mobility, fuel versatility, on-site power generation capabilities, suitability for off-grid operations, emergency preparedness, and adaptability to challenging environments. These compressors provide a reliable source of compressed air, enabling a wide range of applications in remote settings.

China Custom Oxygen Gas Hydrogen Gas Helium Gas Middle High Pressure 30bar Air Gas Piston Compressor   air compressor partsChina Custom Oxygen Gas Hydrogen Gas Helium Gas Middle High Pressure 30bar Air Gas Piston Compressor   air compressor parts
editor by CX 2024-02-07

China OEM No Oil Luburication Medical Oxygen Compressor for Hospital Purpose small air compressor

Product Description

Product Name Oil-Free Booster Compressor
Model No BW-3/5/10/15/20/30…
Inlet Pressure 0.4Mpa( G )
Exhaust Pressure 150/200Mpa( G )
Type High Pressure Oil Free
Accessories Filling Manifold, Piston ring, Etc

Oilless High Pressure O2 Compressor Specification
NO Volume Inlet pressure Outlet pressure Type Cooling type
1 1-3m³ 0.3-0.4MPa 15MPa 2 lines 4 stages vertical type Wind
2 4-12m³ 0.3-0.4MPa 15MPa 2 lines 4 stages vertical type Wind
3 13-40m³ 0.3-0.4MPa 15MPa 3 lines 3 stages W type Water
4 13-60m³ 0.2-0.4MPa 15MPa 2 lines 4 stages vertical type Water
5 40-80m³ 0.2-0.4MPa 15MPa 4 lines 4 stages S type Water
6 80-120m³ 0.2-0.4MPa 15MPa 4 lines 4 stages S type Water

If you have compressor inquiry please tell us follows information when you send inquiry:

*Compressor working medium: If single gas ,how many purity ? if mixed gas , what’s gas content lit ?

*Suction pressure(gauge pressure):_____bar

*Exhaust pressure(gauge pressure):_____bar

*Flow rate per hour for compressor: _____Nm³/h

Compressor gas suction temperature:_____ºC

Compressor working hours per day :_____hours

Compressor working site altitude :_____m

Environment temperature : _____ºC

Has cooling water in the site or not ?______

Voltage and frequency for 3 phase :____________

Do not has water vapor or H2S in the gas ?______

Application for compressor?__________

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 1 Year
Product Name: Oxygen,Nitrogen Compressor
Gas Type: Oxygen,Nitrogen,Special Gas
Cooling Method: Air Cooling Water Cooling
Application: Filling Cylinder
Customization:
Available

|

air compressor

How Do You Troubleshoot Common Issues with Gas Air Compressors?

Troubleshooting common issues with gas air compressors involves identifying and addressing potential problems that may arise during operation. Here’s a detailed explanation of the troubleshooting process:

1. Start with Safety Precautions:

Prior to troubleshooting, ensure that the gas air compressor is turned off and disconnected from the power source. Follow proper safety procedures, such as wearing appropriate personal protective equipment (PPE), to avoid accidents or injuries.

2. Check Power Supply and Connections:

Verify that the compressor is receiving power and that all electrical connections are secure. Inspect the power cord, plug, and any switches or controls to ensure they are functioning properly. If the compressor is equipped with a battery, check its charge level and connections.

3. Check Fuel Supply:

For gas air compressors that use gasoline or propane, ensure that there is an adequate fuel supply. Check the fuel tank level and verify that the fuel shut-off valve is open. If the compressor has been sitting idle for an extended period, old or stale fuel may cause starting issues. Consider draining and replacing the fuel if necessary.

4. Inspect Air Filters:

Dirty or clogged air filters can restrict airflow and affect the compressor’s performance. Check the intake air filters and clean or replace them as needed. Clogged filters can be cleaned with compressed air or washed with mild detergent and water, depending on the type of filter.

5. Check Oil Level and Quality:

If the gas air compressor has an engine with an oil reservoir, verify the oil level using the dipstick or oil level indicator. Insufficient oil can lead to engine damage or poor performance. Additionally, check the oil quality to ensure it is clean and within the recommended viscosity range. If needed, change the oil following the manufacturer’s guidelines.

6. Inspect Spark Plug:

If the gas air compressor uses a spark plug ignition system, inspect the spark plug for signs of damage or fouling. Clean or replace the spark plug if necessary, following the manufacturer’s recommendations for gap setting and torque.

7. Check Belts and Pulleys:

Inspect the belts and pulleys that drive the compressor pump. Loose or worn belts can cause slippage and affect the compressor’s performance. Tighten or replace any damaged belts, and ensure that the pulleys are properly aligned.

8. Listen for Unusual Noises:

During operation, listen for any unusual or excessive noises, such as grinding, rattling, or squealing sounds. Unusual noises could indicate mechanical issues, loose components, or improper lubrication. If identified, consult the compressor’s manual or contact a qualified technician for further inspection and repair.

9. Consult the Owner’s Manual:

If troubleshooting steps do not resolve the issue, refer to the compressor’s owner’s manual for specific troubleshooting guidance. The manual may provide additional troubleshooting steps, diagnostic charts, or recommended maintenance procedures.

10. Seek Professional Assistance:

If the issue persists or if you are unsure about performing further troubleshooting steps, it is recommended to seek assistance from a qualified technician or contact the manufacturer’s customer support for guidance.

Remember to always prioritize safety and follow proper maintenance practices to prevent issues and ensure the reliable performance of the gas air compressor.

air compressor

Can Gas Air Compressors Be Used for Gas Line Maintenance?

Gas air compressors can be used for certain aspects of gas line maintenance, primarily for tasks that require compressed air. Here’s a detailed explanation:

1. Clearing Debris and Cleaning:

Gas air compressors can be utilized to clear debris and clean gas lines. Compressed air can be directed through the gas lines to dislodge and remove dirt, dust, rust particles, or other contaminants that may accumulate over time. This helps maintain the integrity and efficiency of the gas lines.

2. Pressure Testing:

Gas line maintenance often involves pressure testing to ensure the lines can withstand the required operating pressures. Gas air compressors can provide the necessary compressed air to pressurize the lines for testing purposes. By pressurizing the gas lines with compressed air, technicians can identify any leaks or weaknesses in the system.

3. Leak Detection:

Gas air compressors can also be used in conjunction with appropriate leak detection equipment to identify and locate gas leaks in the gas lines. Compressed air can be introduced into the lines, and the detection equipment can then identify any areas where the compressed air escapes, indicating a potential gas leak.

4. Valve and Equipment Maintenance:

Gas line maintenance may involve the inspection, maintenance, or replacement of valves and associated equipment. Compressed air can be used to clean and blow out debris from valves, purge lines, or assist in the disassembly and reassembly of components.

5. Pipe Drying:

Gas air compressors can aid in drying gas lines after maintenance or repairs. By blowing compressed air through the lines, any residual moisture can be removed, ensuring the gas lines are dry before being put back into service.

6. Precautions and Regulations:

When using gas air compressors for gas line maintenance, it is essential to follow safety precautions and adhere to relevant regulations. Gas line maintenance often involves working in hazardous environments, and proper training, equipment, and procedures must be followed to ensure the safety of personnel and the integrity of the gas system.

It is important to note that gas air compressors should not be used directly for pressurizing or transporting natural gas or other combustible gases. Gas line maintenance tasks involving gas air compressors primarily focus on using compressed air for specific maintenance and testing purposes, as outlined above.

In summary, gas air compressors can be useful for certain aspects of gas line maintenance, including clearing debris, pressure testing, leak detection, valve and equipment maintenance, and pipe drying. However, it is crucial to follow safety guidelines and regulations when working with gas lines and compressed air to ensure the safety and integrity of the gas system.

air compressor

What Are the Primary Applications of Gas Air Compressors?

Gas air compressors have a wide range of applications across various industries and activities. These compressors, powered by gas engines, provide a portable and versatile source of compressed air. Here’s a detailed explanation of the primary applications of gas air compressors:

1. Construction Industry:

Gas air compressors are extensively used in the construction industry. They power a variety of pneumatic tools and equipment, such as jackhammers, nail guns, impact wrenches, and concrete breakers. The portable nature of gas air compressors makes them ideal for construction sites where electricity may not be readily available or practical to use.

2. Agriculture and Farming:

Gas air compressors find applications in the agricultural sector. They are used to operate air-powered machinery and tools, including pneumatic seeders, sprayers, and agricultural pumps. Gas air compressors provide the necessary power to carry out tasks such as crop seeding, irrigation, and pest control in agricultural settings.

3. Recreational Activities:

Gas air compressors are commonly utilized in recreational activities. They are used to inflate tires, sports balls, inflatable structures, and recreational equipment such as air mattresses, rafts, and inflatable toys. Gas air compressors provide a convenient and portable solution for inflating various recreational items in outdoor settings.

4. Mobile Service Operations:

Gas air compressors are employed in mobile service operations, such as mobile mechanics, tire service providers, and mobile equipment repair services. These compressors power air tools and equipment required for on-site repairs, maintenance, and servicing of vehicles, machinery, and equipment. The mobility of gas air compressors allows service providers to bring their tools and compressed air source directly to the location of the service requirement.

5. Remote Job Sites:

Gas air compressors are well-suited for remote job sites or locations without access to electricity. They are commonly used in industries such as mining, oil and gas exploration, and remote construction projects. Gas air compressors power pneumatic tools, machinery, and drilling equipment in these environments, providing a reliable source of compressed air for operational needs.

6. Emergency and Backup Power:

In emergency situations or during power outages, gas air compressors can serve as a backup power source. They can power essential equipment and systems that rely on compressed air, such as emergency lighting, communication devices, medical equipment, and backup generators. Gas air compressors provide a reliable alternative power solution when electrical power is unavailable or unreliable.

7. Sandblasting and Surface Preparation:

Gas air compressors are used in sandblasting and surface preparation applications. They provide the high-pressure air necessary for propelling abrasive media, such as sand or grit, to remove paint, rust, or other coatings from surfaces. Gas air compressors offer the power and portability required for sandblasting operations in various industries, including automotive, metal fabrication, and industrial maintenance.

8. Off-Road and Outdoor Equipment:

Gas air compressors are commonly integrated into off-road and outdoor equipment, such as off-road vehicles, utility trucks, and recreational vehicles. They power air-operated systems, including air suspension systems, air brakes, air lockers, and air horns. Gas air compressors provide the necessary compressed air for reliable and efficient operation of these systems in rugged and outdoor environments.

Overall, gas air compressors have diverse applications in construction, agriculture, recreational activities, mobile service operations, remote job sites, emergency power backup, sandblasting, and various off-road and outdoor equipment. Their portability, versatility, and reliable power supply make them indispensable tools in numerous industries and activities.

China OEM No Oil Luburication Medical Oxygen Compressor for Hospital Purpose   small air compressor China OEM No Oil Luburication Medical Oxygen Compressor for Hospital Purpose   small air compressor
editor by CX 2024-02-06

China Good quality CHINAMFG Oil-Free Compressor Hydrogen Nitrogen Medical Oxygen Gas Booster Compressor portable air compressor

Product Description

NUZHUO  Oil-Free Compressor Hydrogen Nitrogen Medical Oxygen Gas Booster Compressor

Product Name

Oil Free Gas Compressor

Power Range

<55KW

Model No.

GWX- 5/10/20/40/60/80/CUSTOMIZED

Cooling Method

Air-cooled or Water-cooled

Speed Range

300-600r/min

Compression Stages

Level 3-4

Exhaust Pressure Range

≤25.0Mpa

Inspiratory Pressure Range

0-0.6Mpa

Technical features

 

The equipment does not need to add lubricating oil, and the exhaust gas does not contain oil and oil vapor, so it can
be protected from pollution, eliminating the need for complex filtration and purification systems, saving equipment
costs and maintenance costs, and has significant features such as safety, reliability, and easy operation.
Technical features

Details Images
FAQ

Q1: Are you a trading company or manufacturer?

A:We are a manufacturer.

Q2: What is your term of payment?
A: 30%T/T in advance and balance before shipment.
Q3: How long is your delivery time?

A: Depending on what type of machine you are purchased, normally 5 to 10 working days.

Q4: What is your product quality assurance policy? A:We offer a warranty period of 1 year, free lifetime technology support.

Q5: Do you offer OEM/ODM service?

A: Yes.

Q6: Does your product used or new? RTS product or customized product?

A:Our machine is new unit, and following your specific require to design and make it.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Support
Warranty: 1year
Lubrication Style: Oil-less
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

Can Gas Air Compressors Be Used in Cold Weather Conditions?

Gas air compressors are generally designed to operate in a wide range of environmental conditions, including cold weather. However, there are certain considerations and precautions to keep in mind when using gas air compressors in cold weather conditions. Here’s a detailed explanation:

1. Cold Start-Up:

In cold weather, starting a gas air compressor can be more challenging due to the low temperatures affecting the engine’s performance. It is important to follow the manufacturer’s recommendations for cold start procedures, which may include preheating the engine, using a cold weather starting aid, or ensuring the proper fuel mixture. These measures help facilitate smooth start-up and prevent potential damage to the engine.

2. Fuel Type:

Consider the type of fuel used in the gas air compressor. Some fuels, such as gasoline, can be more susceptible to cold weather issues like vapor lock or fuel line freezing. In extremely cold conditions, it may be necessary to use a fuel additive or switch to a fuel type that is better suited for cold weather operation, such as winter-grade gasoline or propane.

3. Lubrication:

Cold temperatures can affect the viscosity of the oil used in the compressor’s engine. It is important to use the recommended oil grade suitable for cold weather conditions. Thicker oil can become sluggish and impede proper lubrication, while oil that is too thin may not provide adequate protection. Consult the manufacturer’s guidelines for the appropriate oil viscosity range for cold weather operation.

4. Moisture Management:

In cold weather, moisture can condense more readily in the compressed air system. It is crucial to properly drain the moisture from the compressor tank and ensure the air lines are free from any accumulated moisture. Failure to manage moisture can lead to corrosion, freezing of air lines, and decreased performance.

5. Protection from Freezing:

In extremely cold conditions, it is important to protect the gas air compressor from freezing. This may involve using insulated covers or enclosures, providing heat sources in the compressor area, or storing the compressor in a temperature-controlled environment when not in use. Taking measures to prevent freezing helps maintain proper operation and prevents potential damage to the compressor components.

6. Monitoring Performance:

Regularly monitor the performance of the gas air compressor in cold weather conditions. Pay attention to any changes in operation, such as reduced air pressure, increased noise, or difficulties in starting. Promptly address any issues and consult the manufacturer or a qualified technician if necessary.

By considering these factors and taking appropriate precautions, gas air compressors can be effectively used in cold weather conditions. However, it is important to consult the specific guidelines provided by the manufacturer for your compressor model, as they may have additional recommendations or specifications for cold weather operation.

air compressor

Can Gas Air Compressors Be Used for Natural Gas Compression?

Gas air compressors are not typically used for natural gas compression. Here’s a detailed explanation:

1. Different Compressed Gases:

Gas air compressors are specifically designed to compress atmospheric air. They are not typically designed or suitable for compressing natural gas. Natural gas, which is primarily composed of methane, requires specialized compressors designed to handle the unique properties and characteristics of the gas.

2. Safety Considerations:

Natural gas compression involves handling a flammable and potentially hazardous substance. Compressing natural gas requires specialized equipment that meets stringent safety standards to prevent leaks, minimize the risk of ignition or explosion, and ensure the safe handling of the gas. Gas air compressors may not have the necessary safety features or materials to handle natural gas safely.

3. Equipment Compatibility:

Natural gas compression systems typically include components such as gas compressors, gas coolers, separators, and control systems that are specifically designed and engineered for the compression and handling of natural gas. These components are built to withstand the specific demands and conditions associated with natural gas compression, including the high pressures and potential presence of impurities.

4. Efficiency and Performance:

Compressing natural gas requires specialized compressors that can handle the high-pressure ratios and volumetric flow rates associated with the gas. Gas air compressors are generally not designed to achieve the same compression ratios and performance levels required for natural gas compression. Using gas air compressors for natural gas compression would likely result in inefficient operation and suboptimal performance.

5. Regulatory Compliance:

Compressing natural gas is subject to various regulations and standards to ensure safety, environmental protection, and compliance with industry guidelines. These regulations often dictate specific requirements for equipment, materials, and operating procedures in natural gas compression systems. Gas air compressors may not meet these regulatory requirements for natural gas compression.

6. Industry Standards and Practices:

The natural gas industry has well-established standards and best practices for equipment selection, installation, and operation in gas compression systems. These standards are based on the specific requirements and characteristics of natural gas. Gas air compressors do not align with these industry standards and practices, which are essential for safe and efficient natural gas compression.

In summary, gas air compressors are not suitable for natural gas compression. Natural gas compression requires specialized equipment designed to handle the unique properties and safety considerations associated with the gas. Compressors specifically engineered for natural gas compression offer the necessary performance, safety features, and regulatory compliance required for efficient and reliable operation in natural gas compression systems.

air compressor

What Are the Advantages of Using a Gas Air Compressor Over an Electric One?

Using a gas air compressor offers several advantages over an electric air compressor. Gas-powered compressors provide unique benefits in terms of mobility, versatility, power, and convenience. Here’s a detailed explanation of the advantages of using a gas air compressor:

1. Portability and Mobility:

Gas air compressors are typically more portable and mobile compared to electric compressors. They often feature handles, wheels, or trailers, allowing for easy transportation to different locations. This portability is especially advantageous in situations where compressed air is needed at remote job sites, outdoor events, or areas without access to electricity. Gas air compressors can be easily moved and positioned where they are required.

2. Independence from Electricity:

One of the primary advantages of gas air compressors is their independence from electricity. They are powered by gas engines, which means they do not rely on a direct connection to the electrical grid. This makes them suitable for use in areas where electrical power is limited, unreliable, or unavailable. Gas air compressors offer a reliable source of compressed air even in remote locations or during power outages.

3. Versatility in Fuel Options:

Gas air compressors provide versatility in terms of fuel options. They can be powered by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This flexibility allows users to choose the most readily available or cost-effective fuel source based on their specific requirements. It also makes gas compressors adaptable to different environments and fuel availability in various regions.

4. Higher Power Output:

Gas air compressors typically offer higher power output compared to electric compressors. Gas engines can generate more horsepower, allowing gas compressors to deliver greater air pressure and volume. This higher power output is beneficial when operating pneumatic tools or equipment that require a significant amount of compressed air, such as jackhammers, sandblasters, or heavy-duty impact wrenches.

5. Continuous Operation:

Gas air compressors can provide continuous operation without the need for frequent breaks or cooldown periods. Electric compressors may overheat with prolonged use, requiring intermittent rest periods to cool down. Gas compressors, on the other hand, can operate continuously for longer durations without the risk of overheating. This continuous operation capability is particularly advantageous in demanding applications or situations that require extended periods of compressed air usage.

6. Quick Startup and Response:

Gas air compressors offer quick startup and response times. They can be started instantly by simply pulling a cord or pressing a button, whereas electric compressors may require time to power up and reach optimal operating conditions. Gas compressors provide immediate access to compressed air, allowing for efficient and prompt task completion.

7. Durability and Resistance to Voltage Fluctuations:

Gas air compressors are generally more durable and resistant to voltage fluctuations compared to electric compressors. Electric compressors can be affected by voltage drops or surges, which may impact their performance or cause damage. Gas compressors, however, are less susceptible to voltage-related issues, making them reliable in environments where voltage fluctuations are common.

8. Lower Energy Costs:

Gas air compressors can offer lower energy costs compared to electric compressors, depending on the price of the fuel being used. Gasoline or diesel fuel, for example, may be more cost-effective than electricity in certain regions or applications. This cost advantage can result in significant savings over time, especially for high-demand compressed air operations.

Overall, the advantages of using a gas air compressor over an electric one include portability, independence from electricity, fuel versatility, higher power output, continuous operation capability, quick startup and response times, durability, resistance to voltage fluctuations, and potentially lower energy costs. These advantages make gas air compressors a preferred choice in various industries, remote locations, and applications where mobility, power, and reliability are crucial.

China Good quality CHINAMFG Oil-Free Compressor Hydrogen Nitrogen Medical Oxygen Gas Booster Compressor   portable air compressorChina Good quality CHINAMFG Oil-Free Compressor Hydrogen Nitrogen Medical Oxygen Gas Booster Compressor   portable air compressor
editor by CX 2024-02-04