Product Description
Product Description
Product Parameters
| Model | Motor Power | Maximum Working Pressure | Free Air Delivery | Air Outlet Pipe Diameter | Weight | Dimensions(L*W*H) | |||
| kW | hp | bar(g) | psig | m³/min | cfm | kg | mm | ||
| BG30APMII | 22 | 30 | 7 | 102 | 4.3 | 152 | G1-1/2″ | 650 | 1500*1000*1350 |
| 8 | 116 | 4.1 | 145 | ||||||
| 10 | 145 | 3.5 | 124 | ||||||
| 13 | 189 | 2.7 | 95 | ||||||
| BG40APMII | 30 | 40 | 7 | 102 | 6.0 | 212 | G1-1/2″ | 700 | 1500*1000*1350 |
| 8 | 116 | 5.9 | 208 | ||||||
| 10 | 145 | 4.7 | 166 | ||||||
| 13 | 189 | 3.9 | 138 | ||||||
| BG50APMII | 37 | 50 | 7 | 102 | 7.1 | 251 | G1-1/2″ | 750 | 1500*1000*1350 |
| 8 | 116 | 6.9 | 244 | ||||||
| 10 | 145 | 5.8 | 205 | ||||||
| 13 | 189 | 5.4 | 191 | ||||||
| BG60APMII | 45 | 60 | 7 | 102 | 10.0 | 353 | G2″ | 1250 | 2100*1300*1650 |
| 8 | 116 | 9.5 | 335 | ||||||
| 10 | 145 | 7.8 | 275 | ||||||
| 13 | 189 | 6.8 | 240 | ||||||
| BG75APMII | 55 | 75 | 7 | 102 | 13.0 | 459 | G2″ | 1300 | 2100*1300*1650 |
| 8 | 116 | 12.5 | 441 | ||||||
| 10 | 145 | 9.2 | 325 | ||||||
| 13 | 189 | 7.5 | 265 | ||||||
| BG100APMII | 75 | 100 | 7 | 102 | 15.5 | 547 | G2″ | 1350 | 2100*1300*1650 |
| 8 | 116 | 15.2 | 537 | ||||||
| 10 | 145 | 12.0 | 424 | ||||||
| 13 | 189 | 10.2 | 360 | ||||||
| BG125APMII | 90 | 125 | 7 | 102 | 19.8 | 699 | DN80 | 2700 | 2500*1650*1900 |
| 8 | 116 | 19.5 | 689 | ||||||
| 10 | 145 | 15.0 | 530 | ||||||
| 13 | 189 | 14.0 | 494 | ||||||
| BG150APMII | 110 | 150 | 7 | 102 | 24.0 | 848 | DN80 | 2800 | 2500*1650*1900 |
| 8 | 116 | 23.0 | 812 | ||||||
| 10 | 145 | 19.2 | 678 | ||||||
| 13 | 189 | 16.0 | 565 | ||||||
| BG180APMII | 132 | 180 | 7 | 102 | 27.5 | 971 | DN80 | 3000 | 2500*1650*1900 |
| 8 | 116 | 27.0 | 954 | ||||||
| 10 | 145 | 23.7 | 837 | ||||||
| 13 | 189 | 19.0 | 671 | ||||||
| BG220APMII | 160 | 220 | 7 | 102 | 33.0 | 1165 | DN80 | 4300 | 3000*1900*1950 |
| 8 | 116 | 32.5 | 1148 | ||||||
| 10 | 145 | 27.5 | 971 | ||||||
| 13 | 189 | 22.5 | 795 | ||||||
| BG250APMII | 185 | 250 | 7 | 102 | 39.0 | 1377 | DN80 | 4400 | 3000*1900*1950 |
| 8 | 116 | 36.0 | 1271 | ||||||
| 10 | 145 | 32.0 | 1130 | ||||||
| 13 | 189 | 27.5 | 971 | ||||||
| BG270APMII | 200 | 270 | 7 | 102 | 43.5 | 1536 | DN80 | 5000 | 3600*2200*2200 |
| 8 | 116 | 41.0 | 1448 | ||||||
| 10 | 145 | 35.5 | 1254 | ||||||
| 13 | 189 | 31.5 | 1112 | ||||||
| BG300APMII | 220 | 300 | 7 | 102 | 51.5 | 1819 | DN100 | 5500 | 3600*2200*2200 |
| 8 | 116 | 46.0 | 1624 | ||||||
| 10 | 145 | 38.5 | 1360 | ||||||
| 13 | 189 | 35.5 | 1254 | ||||||
| BG340APMII | 250 | 340 | 7 | 102 | 54.0 | 1907 | DN100 | 6000 | 3600*2200*2200 |
| 8 | 116 | 51.0 | 1801 | ||||||
| 10 | 145 | 45.0 | 1589 | ||||||
| 13 | 189 | 38.0 | 1342 | ||||||
| BG380APMII | 280 | 380 | 7 | 102 | 60.0 | 2119 | DN125 | 6800 | 4000*2300*2300 |
| 8 | 116 | 57.0 | 2013 | ||||||
| 10 | 145 | 50.0 | 1766 | ||||||
| 13 | 189 | 43.0 | 1519 | ||||||
| BG420APMII | 315 | 420 | 7 | 102 | 65.0 | 2295 | DN125 | 7000 | 4000*2300*2300 |
| 8 | 116 | 62.0 | 2190 | ||||||
| 10 | 145 | 56.0 | 1978 | ||||||
| 13 | 189 | 50.5 | 1783 | ||||||
| BG480APMII | 355 | 480 | 7 | 102 | 75.0 | 2649 | DN150 | 8500 | 4200*2200*2350 |
| 8 | 116 | 73.0 | 2578 | ||||||
| 10 | 145 | 64.0 | 2260 | ||||||
| 13 | 189 | 55.0 | 1942 | ||||||
| BG540APMII | 400 | 540 | 7 | 102 | 84.0 | 2966 | DN150 | 9000 | 4200*2200*2350 |
| 8 | 116 | 82.0 | 2896 | ||||||
| 10 | 145 | 72.0 | 2543 | ||||||
| 13 | 189 | 61.0 | 2154 | ||||||
Company Profile
Wallboge is a high-tech enterprise and is considered 1 of the leading manufacturers of air compressor products in China. Our goal is to provide exceptional customer service coupled with quality products and energy saving solutions.
Wallboge’ s primary businesses focus in following key areas:
Integrated screw air compressor for laser cutting
Permanent magnet variable frequency screw air compressor
Two-stage compression permanent magnet variable frequency screw air compressor
Low pressure two-stage compression permanent magnet variable frequency screw air compressor
Low pressure permanent magnet variable frequency screw air compressor
Water-lubricated oil-free screw air compressor
Fixed speed screw air compressor
Oil-free screw blower
Screw vacuum pump
At Wallboge, we earn our customers’ trust and satisfaction by manufacturing the superior quality compressed air products for all industries. All of our products are designed for reliable performance, easy maintenance, and maximum energy efficiency. CHINAMFG has been exporting to more than 150 countries across the globe.
Wallboge continuously innovates product development and management to meet customers’ demand. The powerful enterprise culture and continuous innovation make CHINAMFG improved rapidly. Wallboge’ s vision is to be a world-renowned high-end energy-saving machinery brand, with sustainable development, constantly improving its own value and sharing it with our customers and staff, committed to continuously satisfying the needs of global companies by providing a full range of industrial air compression solutions.
Certifications
Exhibitions
After Sales Service
1. 24/7 after sales service in different languages.
2. Online instruction for installation and commissioning.
3. On-site instruction for installation and commissioning provided by well-trained engineers or local authorized service center.
4. CHINAMFG agents and after sales service available.
Our Advantages
1. Proven product quality.
2. Factory direct prices.
3. On-time delivery.
4. Prompt technical support in different languages before sales, in sales and after sales.
5. Small orders accepted to check quality first.
6. OEM & ODM service available.
FAQ
Q1: Are you a factory or a trading company?
A1: We are a factory. Please check our Company Profile.
Q2: What is the exact address of your factory?
A2: No. 588, East Tonggang Road, Shaxi Town, HangZhou City, ZheJiang Province, China
Q3: What is your delivery time?
A3: For standard voltage, the delivery time is 15 working days after you confirm the order. For non-standard voltage, please contact our sales to confirm the delivery time.
Q4: What kind of payment terms do you accept?
A4: We accept T/T, L/C at sight.
Q5: How long is the warranty of your air compressor?
A5: 2 years for the whole air compressor except consumable spare parts.
Q6: How long could your air compressor be used?
A6: Generally, more than 10 years.
Q7: What is your MOQ requirement?
A7: 1 unit.
Q8: Can you offer OEM & ODM service?
A8: Yes, with a professional design team, we can offer OEM & ODM service.
| After-sales Service: | Engineers Available to Overseas Service. |
|---|---|
| Warranty: | 2 Years |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Structure Type: | Closed Type |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
Can air compressors be used for automotive applications?
Yes, air compressors can be used for various automotive applications and are commonly found in automotive repair shops, garages, and even in some vehicles. Here are some automotive applications where air compressors are frequently utilized:
1. Tire Inflation: Air compressors are commonly used to inflate tires in automotive applications. They provide a convenient and efficient way to inflate tires to the recommended pressure, ensuring optimal tire performance, fuel efficiency, and safety.
2. Air Tools: Air compressors power a wide range of pneumatic tools used in automotive repair and maintenance. These tools include impact wrenches, ratchet wrenches, air hammers, pneumatic drills, and sanders. Air-powered tools are favored for their high torque and power-to-weight ratio, making them suitable for heavy-duty automotive tasks.
3. Spray Painting: Air compressors are commonly used in automotive painting applications. They power airbrushes and spray guns that are used to apply paint, primer, and clear coats. Air compressors provide the necessary air pressure to atomize the paint and deliver a smooth and even finish.
4. Brake System Maintenance: Air compressors play a crucial role in maintaining and diagnosing automotive brake systems. They are used to pressurize the brake lines, allowing for proper bleeding of the system and detection of leaks or faults.
5. Suspension Systems: Some automotive suspension systems, such as air suspensions, rely on air compressors to maintain the desired air pressure in the suspension components. The compressor inflates or deflates the suspension as needed to provide a comfortable ride and optimal handling.
6. Cleaning and Dusting: Air compressors are used for cleaning automotive parts, blowing away dust and debris, and drying surfaces. They provide a high-pressure stream of air that effectively cleans hard-to-reach areas.
7. Air Conditioning Systems: Air compressors are a key component in automotive air conditioning systems. They compress and circulate refrigerant, allowing the system to cool and dehumidify the air inside the vehicle.
When using air compressors for automotive applications, it’s important to consider the specific requirements of the task at hand. Ensure that the air compressor has the necessary pressure and capacity to meet the demands of the application. Additionally, use appropriate air hoses, fittings, and tools that are compatible with the compressor’s output.
Overall, air compressors are versatile and valuable tools in the automotive industry, providing efficient power sources for a wide range of applications, from tire inflation to powering pneumatic tools and supporting various automotive systems.


editor by CX 2023-10-12
China factory Great Brand Hot Sale Variale Speed with Pm Motor Direct Driven Screw Air Compressor for Rubber Plant air compressor CHINAMFG freight
Product Description
GREAT brand Hot Sale Variale Speed with PM motor direct Driven Screw Air Compressor for Rubber plant
1. Photo & Features for our Twin Rotary screw air compressor :
2. Advantages for our ZheJiang Great Air Compressor Manufaturing :
| Our company advantages | 1. Over 60 years China professsinal manufacture for air compressor ,An ISO9000 company |
|
2.European standard,China made &factory directly supply |
|
|
3. Superior porformance &high efficiency with reasonable price |
|
|
4. Low power consumptions for more output |
|
|
5. Trouble free & cost saving |
|
|
6. Timely pre-sale and after-sale service |
|
| 7. Easy operatation &maintenance |
3.Production introduction for GREAT brand Hot Sale Variale Speed with PM motor direct Driven Screw Air Compressor for Rubber plant:
Features:
1.One shaft type structure
2.Difference speeds,permanent magnet motor with high efficiency, remarkable energy-saving effect
3.Small volume, low noise
4.Stable operation
Advantages:
The permanent magnet motor remains high efficiency at low speeds, ensuring obvious energy-saving advantages in small air volume
-Frequency range from 0%-100%(common conversion from 60%-100%)
-Compared with the fixed speed compressor, energy saving 22%-40%
-Compared with the common inverter compressor, energy saving 5%-15%
System volume fluctuations larger, the energy-saving effect more obvious.
Products range :
Motor power:5.5kw-630 kw/7.5hp-840hp , flow capacity:0.6-111 m³/min, pressure: 7-13 bar
Technical Parameters:
| Model | Working pressure (Bar) | Flow Air Capacity (m3/min) | Power (Kw) | Noise (dBa) | Dimensions (mm) | Outlet pipe size | Weight (Kg) |
| TKLYC-7F | 7/8/10 | 1.23/1.16/1.02 | 7.5 | 65±3 | 840*670*925 | G3/4 | 350 |
| TKLYC-11F | 7/8/10 | 1.65/1.62/1.4 | 7.5 | 65±3 | 1000*820*1145 | G3/4 | 390 |
| TKLYC-15F | 7/8/10 | 2.65/2.24/2.1 | 15 | 65±3 | 1300*850*1257 | G1 | 410 |
| TKLYC-18F | 7/8/10 | 3.1/3.0/2.7 | 18.5 | 65±3 | 1300*850*1257 | G1 | 440 |
| TKLYC-22F | 7/8/10 | 3.8/3.7/3.3 | 22 | 65±3 | 1300*850*1258 | G1 | 650 |
| TKLYC-30F | 7/8/10 | 5.3/5.1/4.5 | 30 | 68±3 | 1600*1100*1430 | G1 1/2 | 800 |
| TKLYC-37F | 7/8/10 | 6.7/6.5/5.7 | 37 | 68±3 | 1600*1100*1430 | G1 1/2 | 850 |
| TKLYC-45F | 7/8/10 | 8.6/8.0/7.1 | 45 | 68±3 | 1600*1100*1430 | G1 1/2 | 900 |
| TKLYC-55F | 7/8/10 | 10.3/10.1/9.3 | 55 | 72±3 | 1750*1150*1500 | DN50 | 1650 |
| TKLYC-75F | 7/8/10 | 14.0/13.5/12.5 | 75 | 72±3 | 1750*1150*1500 | DN50 | 1800 |
| TKLYC-90F | 7/8/10 | 17.2/15.9/14.0 | 90 | 72±3 | 2000*1150*1680 | DN50 | 1950 |
| TKLYC-110F | 7/8/10 | 21.4/19.9/18.1 | 110 | 73±3 | 2300*1540*1900 | DN80 | 2500 |
| TKLYC-132F | 7/8/10 | 24.6/23.8/22.1 | 132 | 73±3 | 2300*1540*1900 | DN80 | 2600 |
| TKLYC-160F | 7/8/10 | 28.7/27.1/25.2 | 160 | 75±3 | 2900*1540*2120 | DN80 | 3600 |
| TKLYC-185F | 7/8/10 | 33.5/30.5/27.0 | 185 | 76±3 | 3100*1940*2389 | DN80 | 4200 |
| TKLYC-200F | 7/8/10 | 36.5/33.5/30.6 | 200 | 78±3 | 3100*1940*2389 | DN100 | 4400 |
| TKLYC-250F | 7/8/10 | 45.3/43.0/38.1 | 250 | 78±3 | 3400*2050*2330 | DN100 | 4900 |
4. Certificate:
5.Applications:
7. FAQ:
Q1: Are you factory or trade company?
A1: We are factory.
Q2: Warranty terms of your machine?
A2: One year warranty for the machine and technical support according to your needs.
Q3: Will you provide some spare parts of the machines?
A3: Yes, of course.
Q4: How long will you take to arrange production?
A4: 380V 50HZ we can delivery the goods within 20 days. Other voltage we will delivery within 30 days.
Q5: Can you accept OEM orders?
A5: Yes, with professional design team, OEM orders are highly welcome!
8. Contact:
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
Are there special considerations for air compressor installations in remote areas?
Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:
1. Power Source:
Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.
2. Environmental Conditions:
Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.
3. Accessibility and Transport:
Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.
4. Maintenance and Service:
In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.
5. Fuel and Lubricants:
For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.
6. Noise and Environmental Impact:
Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.
7. Communication and Remote Monitoring:
Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.
By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2023-10-12
China wholesaler Luy 200-10 Diesel Portable Mobile 10bar Screw Air Compressor for Sand Blast with Hot selling
Product Description
LUY 200-10 Diesel Portable Mobile 10Bar Screw Air compressor For Sand blast
The diesel mobile air compressor uses diesel as power source and is easy to use in field operations.
This air compressor with tires, it can be used for short distance movement, flexible and convenient to move.
Product Features:
1. CHINAMFG engines.
2. The pressure range 1.7-2.4 Mpa, air discharge pressure range 16-29.5 m3/min.
3. Automatic control and protection system.
4. Error free capacity control.
5. Deluxe micro-computer florescence control panel.
6. All weather models for high altitude operations(customization available for above 5500m high altitude applications by CHINAMFG only).
7. High quality filtration system with safety filters.
8. Upgraded to EU Stage IIIA engine for more energy saving & eco-friendly.
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | Diesel Engine |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Movable Type |
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for painting and sandblasting?
Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:
Painting:
Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:
- Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
- Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
- Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.
Sandblasting:
Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:
- Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
- Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
- Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.
When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.
Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2023-10-11
China Custom Hf10/13 (H) Mobile Screw Air Compressor air compressor for sale
Product Description
Product Description
1. High Operation interface according the Instrument design in the primary and secondary to separate, interface more concise, clear, make user to operate more easily.
2. The vane design, beautiful appearance, convenient maintenance and repair.
3. Small volume, light weight, low noise; compact, easy to transport, actual cover small area, In the narrow working condition can be easily in and out, Reduce transportation costs.
4. Equipped with large capacity fuel tank and can work continuously more than 8 hours, meet the needs of a class.
5. Overall comprehensive configuration sound-absorbing sponge, lower noise, more quiet.
Technical Data
| essor | HF10/13(H) | |
| Air Displacement(m3/min) | 10 | |
| Discharge Pressure(Bar) | 13 | |
| Air End Model | COMER AB-780RK | |
| Compressed Class | Single | |
| Oil Tank Capacity(L) | 100 | |
| Screw Oil Capacity(L) | 54 | |
| Engine | Engine Model | Xihu (West Lake) Dis.Feng CHINAMFG (6BT5.9-C150) |
| Cylinder No. | 6 | |
| Rated Power(kw) | 110 | |
| Rotate Speed(rpm) | 2400 | |
| Lubricating Oil Capacity(L) | 12-18 | |
| Coolant Capacity(L) | 25-28 | |
| Fuel Capacity(L) | 120-160 | |
| Whole Machine | Drive Mode | Direct Drive |
| Joint Dimension | 1-G1″,1-G1 1/2″ | |
| Size(mm) | 3220×1850×1850 | |
| Weight(kg) | 2450 | |
| Wheel No. | 2 |
Delivery
Company Introduction
Hanfa Group established in 1998 is a key enterprise in the industry of geological exploration and water well field, with the ability to research,manufacture and market. Now, the Group pursues high standard manufacturing and qualified products. It has more than 20 species such as water well drilling rig, core drilling rig, engineering drilling rig, DTH drilling rig, horizontaldirectional drilling rig, etc. These machines are mainly used in geological prospecting, exploration of railway and highway engineering, mining, SPT, water well, geothermal well etc. Some of them won the Scientific and Technical Advance Prize or the National Scientific Research Achievement Prize. All the products have passed the quality system certification of ISO9001:2000 and are national inspection-free products.
1. More than 20 years of experience
The factory is located in ZheJiang Province, China. We are very welcome to visit our factory. If
you need it, we will arrange a pick-up.
2.Top production team
The transportation and packaging will be packaged in international standards. If you have special packaging requirements, we will give you the most suitable solution.
3.Our Service
– New machine provides technical trair.
– Once anything goes wrong with the machine by normal using, our technical person must appear at the first time no matter where you are.
– When the machine should be maintained, you will receive the reminding from us.
– According to different geological conditions, we will recommend different construction plans for you
– Remind you which are wearing parts, so you can prepare enough.
– 24 hours respond to your quality problem.
FAQ
1, Are you trading company or manufacturer?
We are professional manufacturer, and our factory mainly produce water well drilling rig, core drilling rig, DTH drilling rig, piling rig, etc. Our products have been exported to more than 50 countries of Asia, South America, Africa, and get a good reputation in the world.
2, Are your products qualified?
Yes, our products all have gained ISO certificate,and we have specialized quality inspection department for checking every machine before leaving our factory.
3, How about your machine quality?
All of our machines hold the ISO, QC and TUV certificate, and each set of machine must pass a great number of strict testing in order to offer the best quality to our customers.
4, Do you have after service?
Yes, we have special service team which will offer you professional guidance. If you need, we can send our engineer to your worksite and provid the training for your staff.
5, What about the qaulity warranty?
We offer one-year quality warranty for machines’ main body.
6, How long can you deliver the machine?
Generally, we can deliver the machine in 7 days.
Our Customers
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Water Cooling |
| Power Source: | Diesel Engine |
| Structure Type: | Closed Type |
| Installation Type: | Movable Type |
| Type: | Twin-Screw Compressor |
.webp)
How are air compressors used in the food and beverage industry?
Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:
1. Packaging and Filling:
Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.
2. Cleaning and Sanitization:
Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.
3. Cooling and Refrigeration:
In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.
4. Aeration and Mixing:
Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.
5. Pneumatic Conveying:
In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.
6. Quality Control and Testing:
Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.
7. Air Agitation:
In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.
It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.
By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.
.webp)
What is the role of air compressors in manufacturing and industrial processes?
Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:
1. Pneumatic Tools and Equipment:
Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.
2. Automation and Control Systems:
Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.
3. Air Blowing and Cleaning:
Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.
4. Air Separation and Gas Generation:
Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.
5. HVAC Systems:
Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.
6. Air Compression for Storage and Transport:
Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.
7. Process Instrumentation:
Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.
8. Material Handling and Pneumatic Conveying:
In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.
Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.
.webp)
What are the key components of an air compressor system?
An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:
1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.
2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.
3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.
4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.
6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.
7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.
8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.
9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.
10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.
These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.


editor by CX 2023-10-08
China supplier ASME Single Screw Air Booster Compressor for Oil Gas Hydrogen Helium air compressor oil
Product Description
Oil-free Gas Compressor Booster
Product Description
Completely oil-free reciprocating piston compressor series: flow rate from 0.01m ³/ Min, pressure ranging from 0.1MPa to 15Mpa, motor power ranging from 0.1KW to 132KW, compressed medium including air, oxygen, nitrogen, sulfur hexafluoride, oil gas, hydrogen, helium, argon, carbon dioxide, biogas, natural gas, etc. According to user requirements, there are regular, silent, explosion-proof, anti-corrosion, etc.
Simultaneously equipped with post-processing equipment including coolers, high-efficiency oil removers, refrigerated dryers, adsorption dryers, filters, etc., we provide economical and reasonable configurations according to your different requirements for compressed gas quality. Oil content<0.01PPM, dust particles<0.01HM, CHINAMFG a low pressure dew point of -40 ºC. The gas storage tank series includes air storage tanks, oxygen storage tanks, steam storage tanks, chemical storage tanks, sandblasting tanks, sub cylinders, etc., with a volume of 0.05m ³ To 1000m ³, The pressure ranges from 0.1Mpa to 10.0Mpa. The above products are widely used in industries such as food, beverage, grain machinery, water treatment, medical, pharmaceutical, petroleum, chemical, laser, communication, national defense, scientific research, metallurgy, mining, electronics, power, instruments, automotive protection, advanced spraying, etc.
Product Type
| Oxygen compressor | Nitrogen compressor |
| Used in hospital oxygen supply centers to increase the pressure of the room’s oxygen supply pipeline, boost oxygen, and fill it into steel cylinders. It can also be used for industrial acetylene combustion cutting, cutting scrap steel in steel plants, supporting boiler oxygen combustion, and recirculating the vapor oxygen from low-temperature liquid oxygen tanks into the tanks for various working conditions | Mainly used for pressurization and filling of nitrogen gas cylinders, as well as nitrogen pressure testing and leakage testing of pipelines. The maximum filling pressure can reach 40MPA, which can be divided into air-cooled and water-cooled cooling according to the cooling method, and 3 and 4 stages of compression according to the compression stage. |
| Hydrogen compressor | Carbon dioxide compressor |
| Used for pressurizing hydrogen in steel plant heat treatment, in the polycrystalline silicon industry, to provide continuous pressure raw material hydrogen for reactors. In the future, with the widespread construction of hydrogen refueling stations, hydrogen compressors will be more used in hydrogen fuel cells, filling hydrogen vehicles with very high pressure to obtain clean, green, and pollution-free energy. |
Used for the recovery of carbon dioxide gas in dry ice plants, and for the recovery, storage, and reuse of CO2 in the supercritical extraction process of carbon dioxide; In the dry ice factory and carbon dioxide extraction process, the suction pressure of the compressor is 0-1BARG, the discharge pressure can reach 80BAR, and the flow rate is 5NM3-600NM3/hour |
Product Parameters
Detailed Photos
1.The friction components are made using special self-lubricating materials, allowing them to operate without the need for any additional lubricating oil.
2.The expelled air is oil-free, eliminating concerns about secondary pollution of gas facilities and products by oil.
3.It provides both environmental and societal benefits.
4.Only 2 daily inspections are required, making usage and maintenance more convenient.
5.The oil-free design is employed, with no oil present in the crankcase and compression cylinder.
6.These components boast a long lifespan. All models utilize a 4-level motor drive, ensuring low-speed, smooth operation. The mid-cooler is divided for better temperature control, resulting in lower exhaust temperatures and reduced resistance losses in the valve group design.
Project Case
Product Applications
Application:
The above products are widely used in industries such as food, beverage, grain machinery, water treatment, medical, pharmaceutical, petroleum, chemical, laser, communication, national defense, scientific research, metallurgy, mining, electronics, power, instruments, automotive protection, advanced spraying, etc.
Company Profile
WOBO has a comprehensive marketing service system and strong continuous research and development capabilities. Its products cover more than 30 types of gas chemical compressors, including oil free lubrication air compressors, oxygen compressors, nitrogen compressors, hydrogen compressors, carbon dioxide compressors, helium compressors, argon compressors, sulfur hexafluoride compressors, etc. The maximum pressure can reach 35Mpa. The products are widely used in petrochemical, textile, food, medicine, electricity, machinery, metallurgy, etc, In various fields such as home appliances and environmental protection, our company’s multiple wind brand oil-free compressors have been exported to more than 40 countries and regions in Europe, America, Japan, South Korea, Southeast Asia, the Middle East, and Africa, winning widespread praise from many customers. The WOBO brand has established a good quality reputation in the hearts of users.
|
Shipping Cost:
Estimated freight per unit. |
To be negotiated |
|---|
| After-sales Service: | Online Support, Video Technical Support |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Oil-free |
| Samples: |
US$ 6500/Unit
1 Unit(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
Can Gas Air Compressors Be Used for High-Pressure Applications?
Gas air compressors can be used for high-pressure applications, but there are certain considerations to keep in mind. Here’s a detailed explanation:
Gas air compressors are available in various sizes and configurations, and their suitability for high-pressure applications depends on factors such as the compressor’s design, power output, and the specific requirements of the application. Here are some key points to consider:
1. Compressor Design:
Not all gas air compressors are designed to handle high-pressure applications. Some compressors are specifically built for low-to-medium pressure ranges, while others are designed to deliver higher pressure outputs. It is important to select a gas air compressor model that is rated for the desired pressure range. The compressor’s specifications and manufacturer’s guidelines will provide information on the maximum pressure it can generate.
2. Power Output:
The power output of a gas air compressor is a crucial factor in determining its suitability for high-pressure applications. High-pressure compressors require more power to achieve and sustain the desired pressure levels. It is important to ensure that the gas air compressor has sufficient power output to meet the demands of the specific high-pressure application.
3. Cylinder Configuration:
The cylinder configuration of the gas air compressor can also affect its ability to handle high-pressure applications. Compressors with multiple cylinders or stages are designed to generate higher pressures compared to compressors with a single cylinder. Multi-stage compressors compress the air in multiple steps, allowing for higher pressure ratios.
4. Safety Considerations:
High-pressure applications require careful attention to safety considerations. Gas air compressors used for high-pressure applications should be equipped with appropriate safety features such as pressure relief valves, pressure gauges, and safety shut-off systems. It is crucial to follow all safety guidelines and regulations to ensure safe operation.
5. Maintenance and Inspection:
Regular maintenance and inspection are essential for gas air compressors used in high-pressure applications. High-pressure operation can put additional stress on the compressor components, and proper maintenance helps ensure optimal performance and safety. Regular inspections and adherence to maintenance schedules will help identify and address any potential issues before they become major problems.
6. Application-specific Considerations:
Each high-pressure application may have specific requirements and considerations. It is important to evaluate factors such as the required pressure level, duty cycle, flow rate, and any specific environmental conditions that may impact the performance of the gas air compressor. Consulting with the compressor manufacturer or a qualified professional can help determine the suitability of a gas air compressor for a particular high-pressure application.
In summary, gas air compressors can be used for high-pressure applications, provided that they are designed, rated, and configured appropriately. It is essential to consider factors such as compressor design, power output, safety features, maintenance requirements, and application-specific considerations to ensure safe and reliable operation at high pressures.
Can Gas Air Compressors Be Used for Sandblasting?
Yes, gas air compressors can be used for sandblasting. Sandblasting is a process that involves propelling abrasive materials, such as sand or grit, at high speeds to clean, etch, or prepare surfaces. Here’s a detailed explanation:
1. Compressed Air Requirement:
Sandblasting requires a reliable source of compressed air to propel the abrasive material. Gas air compressors, particularly those powered by gasoline or diesel engines, can provide the necessary compressed air for sandblasting operations. The compressors supply a continuous flow of compressed air at the required pressure to propel the abrasive material through the sandblasting equipment.
2. Portable and Versatile:
Gas air compressors are often portable and can be easily transported to different job sites, making them suitable for sandblasting applications in various locations. The portability of gas air compressors allows flexibility and convenience, especially when sandblasting needs to be performed on large structures, such as buildings, tanks, or bridges.
3. Pressure and Volume:
When selecting a gas air compressor for sandblasting, it is essential to consider the required pressure and volume of compressed air. Sandblasting typically requires higher pressures to effectively propel the abrasive material and achieve the desired surface treatment. Gas air compressors can provide higher pressure outputs compared to electric compressors, making them well-suited for sandblasting applications.
4. Compressor Size and Capacity:
The size and capacity of the gas air compressor should be chosen based on the specific requirements of the sandblasting project. Factors to consider include the size of the sandblasting equipment, the length of the air hose, and the desired duration of continuous operation. Selecting a gas air compressor with an appropriate tank size and airflow capacity ensures a consistent supply of compressed air during sandblasting.
5. Maintenance Considerations:
Regular maintenance is crucial for gas air compressors used in sandblasting applications. The abrasive nature of the sand or grit used in sandblasting can introduce particles into the compressor system, potentially causing wear or clogging. Regular inspection, cleaning, and maintenance of the compressor, including filters, valves, and hoses, help prevent damage and ensure optimal performance.
6. Safety Precautions:
When using gas air compressors for sandblasting, it is essential to follow appropriate safety precautions. Sandblasting generates airborne particles and dust, which can be hazardous if inhaled. Ensure proper ventilation, wear appropriate personal protective equipment (PPE), such as respiratory masks, goggles, and protective clothing, and follow recommended safety guidelines to protect the operator and others in the vicinity.
In summary, gas air compressors can be effectively used for sandblasting applications. They provide the necessary compressed air to propel abrasive materials, offer portability and versatility, and can deliver the required pressure and volume for efficient sandblasting operations. Proper compressor selection, maintenance, and adherence to safety precautions contribute to successful and safe sandblasting processes.
What Is a Gas Air Compressor?
A gas air compressor is a type of air compressor that is powered by a gas engine instead of an electric motor. It uses a combustion engine, typically fueled by gasoline or diesel, to convert fuel energy into mechanical energy, which is then used to compress air. Here’s a detailed explanation of a gas air compressor:
1. Power Source:
A gas air compressor utilizes a gas engine as its power source. The engine can be fueled by gasoline, diesel, or other types of combustible gases, such as natural gas or propane. The combustion engine drives the compressor pump to draw in air and compress it to a higher pressure.
2. Portable and Versatile:
Gas air compressors are often designed to be portable and versatile. The gas engine provides mobility, allowing the compressor to be easily transported and used in different locations, including remote job sites or areas without access to electricity. This makes gas air compressors suitable for applications such as construction projects, outdoor activities, and mobile service operations.
3. Compressor Pump:
The compressor pump in a gas air compressor is responsible for drawing in air and compressing it. The pump can be of various types, including reciprocating, rotary screw, or centrifugal, depending on the specific design of the gas air compressor. The pump’s role is to increase the pressure of the incoming air, resulting in compressed air that can be used for various applications.
4. Pressure Regulation:
Gas air compressors typically feature pressure regulation mechanisms to control the output pressure of the compressed air. This allows users to adjust the pressure according to the requirements of the specific application. The pressure regulation system may include pressure gauges, regulators, and safety valves to ensure safe and reliable operation.
5. Applications:
Gas air compressors find applications in a wide range of industries and activities. They are commonly used in construction sites for powering pneumatic tools such as jackhammers, nail guns, and impact wrenches. Gas air compressors are also utilized in agriculture for operating air-powered machinery like sprayers and pneumatic seeders. Additionally, they are employed in recreational activities such as inflating tires, sports equipment, or inflatable structures.
6. Maintenance and Fuel Considerations:
Gas air compressors require regular maintenance, including engine servicing, oil changes, and filter replacements, to ensure optimal performance and longevity. The type of fuel used in the gas engine also needs to be considered. Gasoline-powered compressors are commonly used in smaller applications, while diesel-powered compressors are preferred for heavy-duty and continuous operation due to their higher fuel efficiency and durability.
Overall, a gas air compressor is an air compressor that is powered by a gas engine, offering mobility and versatility. It provides compressed air for various applications and is commonly used in construction, agriculture, and outdoor activities. Regular maintenance and fuel considerations are essential to ensure reliable operation and optimal performance.


editor by CX 2023-10-05
China best Factory Direct Sales 55kw 75HP High Pressure Screw Air Compressor air compressor parts
Product Description
Product Description:
product name : Factory Direct Sales 55kw 75HP High Pressure Screw Air Compressor
delivery:7-15working days after payment recived.
warranty : 1 year
| Model Number | AS-75HB |
| Pressure | 7-12bar |
| Capacity | 9.2m3/min |
| Motor Power | 55kw 75hp |
| Dimensions(mm) Air Cooled | 1650*1200*1540 |
| Weight | 1050kg |
| Noise | 72dB(A) |
Packaging & Shipping
Packing: Neutral packing & wooden case
Shipping: 7-15 working days
our services:
1.24 hours a day, 7 days a week
2.1-stop purchasing
3.Cheap, fast and efficient
4.adequate stocks
5.17 years experiences
6. Seriously quality control
7.Superb technique
No matter what you want, just send me your part number , favorable price will be quoted immediately.
our goal is to “provide the best products and services to our customers”
1.High Quality With Favorable Price
We ensure that the parts we offer are met your needs with high quality ,
Company Information
Hongkong CHINAMFG Industry Limited was established in 2000, located in Chang’an town,
HangZhou city– “China National Machinery and Hardware town”
We’re a Hi-Tech company specialize in research, development, manufacture and
distribution of air compressor sparts. With our rich experience, profession technology
and rigorous quality control, our products are widely used in air compressor field
with good feedback and continuous orders from more than 2,000 customers in domestic
and oversea market.We can solve any technical problems you may encounter
with your air compressor and provide many kinds of air compressor parts for you.
Competitive price will be quoted for you, if you send us inquiry!
We are the best choice for you!
|
Shipping Cost:
Estimated freight per unit. |
To be negotiated |
|---|
| After-sales Service: | 1 Year |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in pharmaceutical manufacturing?
Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:
1. Manufacturing Processes:
Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.
2. Instrumentation and Control Systems:
Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.
3. Packaging and Filling:
Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.
4. Cleanroom Environments:
Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.
5. Laboratory Applications:
In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.
6. HVAC Systems:
Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.
By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.
.webp)
How are air compressors used in refrigeration and HVAC systems?
Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:
1. Refrigerant Compression:
In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.
2. Refrigeration Cycle:
The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.
3. HVAC Cooling and Heating:
In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.
4. Air Conditioning:
Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.
5. Compressor Types:
Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.
6. Energy Efficiency:
Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.
By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.
.webp)
What is the difference between a piston and rotary screw compressor?
Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:
1. Operating Principle:
- Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
- Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.
2. Compression Method:
- Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
- Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.
3. Efficiency:
- Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
- Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.
4. Noise Level:
- Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
- Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.
5. Maintenance:
- Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
- Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.
6. Size and Portability:
- Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
- Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.


editor by CX 2023-10-05
China Best Sales Coupler Direct Drivning Screw Air Compressor air compressor for sale
Product Description
HangZhou CHINAMFG Marine Equipment Co., Ltd. covers an area of 24600 square meters, located in jiangyan Economic Development Zone, fumin CHINAMFG Park, with comprehensive test bench and large lifting equipment test bench, is specialized in the production of Marine safety life-saving equipment enterprises.
The company has the leading technology, strict management, fine equipment, strictly by the China Classification Society CCSISO9001:2008 quality management system certification to ensure, the main production: Marine lifeboat/life raft landing gear, gravity inverted boom davit, free landing davit, gangway winch, lifeboat/rescue boat winch, Marine low, medium and high pressure air compressor and all types of fully enclosed/open lifeboat and rescue boat.
HangZhou CHINAMFG Marine Equipment Co., Ltd. is the production of maritime rescue equipment professional enterprise, main products are the life boat winch, the rescue boat winch, free fall type lifeboat launching device, gravity pour davit arm type, single arm liferaft lowered device, single arm boat/raft hanger and cranes, electric, pneumatic) ladder winch and Marine air compressor and various kinds of form a complete set of lifeboat.
Corporate culture: To build the world heavy industry carrier
— Corporate philosophy
Enterprise tenet: synchronizing with the world and consumers
Enterprise vision: strict management, sustainable development and satisfactory service
Enterprise values: The pursuit of quality The pursuit of Haihao
Enterprise spirit: Honesty, diligence and earnest
Haihao ships are interwoven with glory and dream, hardships and challenges, and will continue to burst out brilliant brilliance in continuous development and struggle
Haihao Marine respects every employee’s hard work, creates a level playing field for employees, and gives full play to their potential
Q: What are the available shipping methods?
A: Port location: HangZhou or ZheJiang , China Shipping to: CHINAMFG Shipping method: by sea, by air, by express Estimated delivery dates depend on specific order list, shipping service selected and receipt of cleared payment. Delivery time may vary.
Q: What payment methods are supported?
A: Payment: By T/T, Western Union, Money Gram for samples 100% with the order, for production,30% paid for deposit by before production arrangement, the balance to be paid before shipment. Negotiation is accepted.
Q: How to control the quality of CHINAMFG Products?
A: Products Material: Strictly control the material used, make sure they can meet international requested standards, and maintain long working life.
Semi-finished products inspection: We examine the proudcts100% before finished. Such as Visual Inspection, Thread testing, Leak Testing, and so on.
Production line test: Our engineers will inspect machines and lines at fixed period.
Finished Product Inspection: We do the test according to ISO19879-2005, leakage test, proof test, re-use of components, burst test, cyclic endurance test, vibration test, etc.
QCTeam:A QC team with more than 10 professional and technical personnel. To ensure 100% products checking.
Q: How long is the product date of delivery probably?
A: The different product, as well as the diferent run quantity can affect the date of delivery, but in ordinary circumstances product date of delivery about 30 days. Most of products have stock, contact us anytime to get more information.
Q: How to Custom-made(OEM/ODM)?
A: If you have a new product drawing or a sample, please send to us, and we can custom-made the product as your required. We wllalso provide our professional advices of the products to make the design to be more realized & maximize the performance.
Q: How about the mini order quantity?
A: We don’t have strict requirments on most items, due to we have stock. More information can send us the enquiry list, we check and reply you. For custom-made, MoQ will be adviced due to the specific product.
| After-sales Service: | After-Sales |
|---|---|
| Warranty: | After-Sales |
| Lubrication Style: | Oil-less |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Angular |
| Samples: |
US$ 5000/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in pharmaceutical manufacturing?
Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:
1. Manufacturing Processes:
Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.
2. Instrumentation and Control Systems:
Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.
3. Packaging and Filling:
Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.
4. Cleanroom Environments:
Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.
5. Laboratory Applications:
In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.
6. HVAC Systems:
Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.
By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.
.webp)
How are air compressors employed in the mining industry?
Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:
1. Exploration and Drilling:
Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.
2. Ventilation and Air Quality Control:
Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.
3. Material Conveyance:
In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.
4. Dust Suppression:
Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.
5. Instrumentation and Control:
Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.
6. Explosive Applications:
In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.
7. Maintenance and Repair:
Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.
It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.
By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.
.webp)
In which industries are air compressors widely used?
Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:
1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.
2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.
3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.
4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.
5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.
6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.
7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.
8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.
9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.
These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.


editor by CX 2023-10-05
China wholesaler 265 Cfm Diesel Oil Gas Mobile Screw Air Compressor for Sandblaster air compressor lowes
Product Description
Mature Factory Similar CHINAMFG Trailer Mounted Portable Movable Diesel Screw Air Compressor 200-1800 cfm For Drilling Machine
High Pressure Movable Screw Air Compressor for Drilling Rig
Mobile Diesel Powered Air Compressor 25 Bar for Well Drilling
ZheJiang Air Compressor Import and Export Co., LTD is located in HangZhou City, ZheJiang Province, which is the capital of Logistics in China, the largest market cluster and commodity distribution center in north China, and 1 of the important cradles of Chinese civilization. Located at the junction of the Yellow Triangle economic circle and the ZheJiang -ZheJiang -HangZhou economic circle, it is also the hub of the north-south passage in eastern China and the core area of the east bridgehead of the Eurasian continent bridge.
The company is about 100 kilometers away from LHangZhou, HangZhou and HangZhou ports, and 200 kilometers away from HangZhou port, which can cope with the delivery needs of foreign customers at the same time. The company’s location also belongs to the strong radiation area of the port.
The company specializes in R & D and sales of power frequency, permanent magnet frequency conversion, 2 -stage compressor permanent magnet frequency conversion, low -voltage and mobile screw air compressor, screw blower and screw vacuum pump. With a deep industry background, 1 step ahead ambition.
The company warmly welcomes people from all around the world to visit the company to guide the establishment of a wide range of business contacts and cooperation. Choosing ZheJiang Air Compressor Import and Export Co., LTD is to choose quality and service, choose culture and taste, choose a permanent and trustworthy partner!
1. High Reliability
Less compressor parts, without wearing parts, so it is reliable, long life, overhaul interval is up to 40 to 80 thousand hours.
2. Easy Operation and Maintenance
A high degree of automation, the operator does not have to go through a long period of professional training, can achieve unattended operation.
3. The Power Balance is Good
There is no unbalanced inertia force, can smoothly high-speed operation, can achieve no basic operation, especially suitable for portable compressors, small size, light weight, small footprint.
4. Strong Adaptability
With a mandatory gas transmission characteristics, the volume flow is almost free from the impact of exhaust pressure, in a wide range of speed to maintain high efficiency.
The machine can meet the demands of overloading use and stands up to the most severe filed environment.
Meanwhile, it also can reduce fuel consumption, which greatly cut down the operation cost.
Subsided structure to install the oil tank, placed around each one, Increase oil reserves, make the add oil time interval longer, the weight on both sides are balanced.
Tank not in the case, make the space more and not only bring convenience to maintenance service, noise is reduced accordingly, but also giving the customer a good value feeling
Packaging & Shipping
FAQ
Q7: Can you give us your best price?
A7: Yes, of course. And we can offer more stable quality products at a suitable price.
Q8: Please send price list ?
A8: OK, could you please provide us with your way of communication?
Q9: Can you send the real picture of the product?
A9: Yes,of course,you please check the pictures and videos,just let me know how many you need ?
Q10: Would it be convenient to hand out your product manual?
A10: Hello,friend,this is our catalog,and the model SUPC560-25-T is the most hot sell,do you need to more introduction?
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | Diesel Engine |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Movable Type |
| Customization: |
Available
|
|
|---|
What Is the Noise Level of Gas Air Compressors?
The noise level of gas air compressors can vary depending on several factors, including the compressor’s design, engine type, operating conditions, and the presence of noise-reducing features. Here’s a detailed explanation:
1. Compressor Design:
The design of the gas air compressor can influence its noise level. Some compressors are engineered with noise reduction in mind, utilizing features such as sound insulation, vibration dampening materials, and mufflers to minimize noise generation. Compressors with enclosed cabinets or acoustic enclosures tend to have lower noise levels compared to open-frame compressors.
2. Engine Type:
The type of engine used in the gas air compressor can impact the noise level. Gas air compressors typically use internal combustion engines powered by gasoline or propane. Gasoline engines tend to produce higher noise levels compared to diesel engines or electric motors. However, advancements in engine technology have led to quieter gasoline engines with improved noise control.
3. Operating Conditions:
The operating conditions of the gas air compressor can affect the noise level. Factors such as the load capacity, speed of operation, and ambient temperature can influence the amount of noise generated. Compressors operating at higher loads or speeds may produce more noise compared to those running at lower levels.
4. Noise-Reducing Features:
Some gas air compressors are equipped with noise-reducing features to minimize sound emissions. These may include built-in silencers, acoustic enclosures, or noise-absorbing materials. Such features help dampen the noise produced by the compressor and reduce its overall noise level.
5. Manufacturer Specifications:
Manufacturers often provide noise level specifications for their gas air compressors. These specifications typically indicate the sound pressure level (SPL) in decibels (dB) at a specific distance from the compressor. It is important to refer to these specifications to get an idea of the expected noise level of a particular compressor model.
6. Distance and Location:
The distance between the gas air compressor and the listener can impact the perceived noise level. As sound waves disperse, the noise level decreases with distance. Locating the compressor in an area that is isolated or distant from occupied spaces can help minimize the impact of noise on the surrounding environment.
It is important to note that gas air compressors, especially those used in industrial or heavy-duty applications, can generate substantial noise levels. Occupational health and safety regulations may require the use of hearing protection for individuals working in close proximity to loud compressors.
Overall, the noise level of gas air compressors can vary, and it is advisable to consult the manufacturer’s specifications and consider noise-reducing features when selecting a compressor. Proper maintenance, such as regular lubrication and inspection of components, can also help minimize noise levels and ensure optimal performance.
How Do Gas Air Compressors Contribute to Energy Savings?
Gas air compressors can contribute to energy savings in several ways. Here’s a detailed explanation:
1. Efficient Power Source:
Gas air compressors are often powered by gasoline or diesel engines. Compared to electric compressors, gas-powered compressors can provide higher power output for a given size, resulting in more efficient compression of air. This efficiency can lead to energy savings, especially in applications where a significant amount of compressed air is required.
2. Reduced Electricity Consumption:
Gas air compressors, as standalone units that don’t rely on electrical power, can help reduce electricity consumption. In situations where the availability of electricity is limited or expensive, using gas air compressors can be a cost-effective alternative. By utilizing fuel-based power sources, gas air compressors can operate independently from the electrical grid and reduce dependence on electricity.
3. Demand-Sensitive Operation:
Gas air compressors can be designed to operate on demand, meaning they start and stop automatically based on the air requirements. This feature helps prevent unnecessary energy consumption during periods of low or no compressed air demand. By avoiding continuous operation, gas air compressors can optimize energy usage and contribute to energy savings.
4. Energy Recovery:
Some gas air compressors are equipped with energy recovery systems. These systems capture and utilize the heat generated during the compression process, which would otherwise be wasted. The recovered heat can be redirected and used for various purposes, such as space heating, water heating, or preheating compressed air. This energy recovery capability improves overall energy efficiency and reduces energy waste.
5. Proper Sizing and System Design:
Selecting the appropriate size and capacity of a gas air compressor is crucial for energy savings. Over-sizing a compressor can lead to excessive energy consumption, while under-sizing can result in inefficient operation and increased energy usage. Properly sizing the compressor based on the specific air demands ensures optimal efficiency and energy savings.
6. Regular Maintenance:
Maintaining gas air compressors in good working condition is essential for energy efficiency. Regular maintenance, including cleaning or replacing air filters, checking and repairing leaks, and ensuring proper lubrication, helps optimize compressor performance. Well-maintained compressors operate more efficiently, consume less energy, and contribute to energy savings.
7. System Optimization:
For larger compressed air systems that involve multiple compressors, implementing system optimization strategies can further enhance energy savings. This may include employing advanced control systems, such as variable speed drives or sequencers, to match compressed air supply with demand, minimizing unnecessary energy usage.
In summary, gas air compressors contribute to energy savings through their efficient power sources, reduced electricity consumption, demand-sensitive operation, energy recovery systems, proper sizing and system design, regular maintenance, and system optimization measures. By utilizing gas-powered compressors and implementing energy-efficient practices, businesses and industries can achieve significant energy savings in their compressed air systems.
What Fuels Are Commonly Used in Gas Air Compressors?
Gas air compressors can be powered by various fuels depending on the specific model and design. The choice of fuel depends on factors such as availability, cost, convenience, and environmental considerations. Here’s a detailed explanation of the fuels commonly used in gas air compressors:
1. Gasoline:
Gasoline is a widely used fuel in gas air compressors, particularly in portable models. Gasoline-powered compressors are popular due to the widespread availability of gasoline and the convenience of refueling. Gasoline engines are generally easy to start, and gasoline is relatively affordable in many regions. However, gasoline-powered compressors may emit more exhaust emissions compared to some other fuel options.
2. Diesel:
Diesel fuel is another common choice for gas air compressors, especially in larger industrial models. Diesel engines are known for their efficiency and durability, making them suitable for heavy-duty applications. Diesel fuel is often more cost-effective than gasoline, and diesel-powered compressors typically offer better fuel efficiency and longer runtime. Diesel compressors are commonly used in construction sites, mining operations, and other industrial settings.
3. Natural Gas:
Natural gas is a clean-burning fuel option for gas air compressors. It is a popular choice in areas where natural gas infrastructure is readily available. Natural gas compressors are often used in natural gas processing plants, pipeline operations, and other applications where natural gas is abundant. Natural gas-powered compressors offer lower emissions compared to gasoline or diesel, making them environmentally friendly.
4. Propane:
Propane, also known as liquefied petroleum gas (LPG), is commonly used as a fuel in gas air compressors. Propane-powered compressors are popular in construction, agriculture, and other industries where propane is used for various applications. Propane is stored in portable tanks, making it convenient for use in portable compressors. Propane-powered compressors are known for their clean combustion, low emissions, and easy availability.
5. Biogas:
In specific applications, gas air compressors can be fueled by biogas, which is produced from the decomposition of organic matter such as agricultural waste, food waste, or wastewater. Biogas compressors are used in biogas production facilities, landfills, and other settings where biogas is generated and utilized as a renewable energy source. The use of biogas as a fuel in compressors contributes to sustainability and reduces dependence on fossil fuels.
It’s important to note that the availability and suitability of these fuel options may vary depending on the region, infrastructure, and specific application requirements. When selecting a gas air compressor, it’s crucial to consider the compatibility of the compressor with the available fuel sources and to follow the manufacturer’s guidelines regarding fuel selection, storage, and safety precautions.


editor by CX 2023-10-02
China manufacturer 265 Cfm Diesel Oil Gas Mobile Screw Air Compressor for Sandblaster air compressor repair near me
Product Description
Mature Factory Similar CHINAMFG Trailer Mounted Portable Movable Diesel Screw Air Compressor 200-1800 cfm For Drilling Machine
High Pressure Movable Screw Air Compressor for Drilling Rig
Mobile Diesel Powered Air Compressor 25 Bar for Well Drilling
ZheJiang Air Compressor Import and Export Co., LTD is located in HangZhou City, ZheJiang Province, which is the capital of Logistics in China, the largest market cluster and commodity distribution center in north China, and 1 of the important cradles of Chinese civilization. Located at the junction of the Yellow Triangle economic circle and the ZheJiang -ZheJiang -HangZhou economic circle, it is also the hub of the north-south passage in eastern China and the core area of the east bridgehead of the Eurasian continent bridge.
The company is about 100 kilometers away from LHangZhou, HangZhou and HangZhou ports, and 200 kilometers away from HangZhou port, which can cope with the delivery needs of foreign customers at the same time. The company’s location also belongs to the strong radiation area of the port.
The company specializes in R & D and sales of power frequency, permanent magnet frequency conversion, 2 -stage compressor permanent magnet frequency conversion, low -voltage and mobile screw air compressor, screw blower and screw vacuum pump. With a deep industry background, 1 step ahead ambition.
The company warmly welcomes people from all around the world to visit the company to guide the establishment of a wide range of business contacts and cooperation. Choosing ZheJiang Air Compressor Import and Export Co., LTD is to choose quality and service, choose culture and taste, choose a permanent and trustworthy partner!
1. High Reliability
Less compressor parts, without wearing parts, so it is reliable, long life, overhaul interval is up to 40 to 80 thousand hours.
2. Easy Operation and Maintenance
A high degree of automation, the operator does not have to go through a long period of professional training, can achieve unattended operation.
3. The Power Balance is Good
There is no unbalanced inertia force, can smoothly high-speed operation, can achieve no basic operation, especially suitable for portable compressors, small size, light weight, small footprint.
4. Strong Adaptability
With a mandatory gas transmission characteristics, the volume flow is almost free from the impact of exhaust pressure, in a wide range of speed to maintain high efficiency.
The machine can meet the demands of overloading use and stands up to the most severe filed environment.
Meanwhile, it also can reduce fuel consumption, which greatly cut down the operation cost.
Subsided structure to install the oil tank, placed around each one, Increase oil reserves, make the add oil time interval longer, the weight on both sides are balanced.
Tank not in the case, make the space more and not only bring convenience to maintenance service, noise is reduced accordingly, but also giving the customer a good value feeling
Packaging & Shipping
FAQ
Q7: Can you give us your best price?
A7: Yes, of course. And we can offer more stable quality products at a suitable price.
Q8: Please send price list ?
A8: OK, could you please provide us with your way of communication?
Q9: Can you send the real picture of the product?
A9: Yes,of course,you please check the pictures and videos,just let me know how many you need ?
Q10: Would it be convenient to hand out your product manual?
A10: Hello,friend,this is our catalog,and the model SUPC560-25-T is the most hot sell,do you need to more introduction?
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | Diesel Engine |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Movable Type |
| Customization: |
Available
|
|
|---|
What Is the Noise Level of Gas Air Compressors?
The noise level of gas air compressors can vary depending on several factors, including the compressor’s design, engine type, operating conditions, and the presence of noise-reducing features. Here’s a detailed explanation:
1. Compressor Design:
The design of the gas air compressor can influence its noise level. Some compressors are engineered with noise reduction in mind, utilizing features such as sound insulation, vibration dampening materials, and mufflers to minimize noise generation. Compressors with enclosed cabinets or acoustic enclosures tend to have lower noise levels compared to open-frame compressors.
2. Engine Type:
The type of engine used in the gas air compressor can impact the noise level. Gas air compressors typically use internal combustion engines powered by gasoline or propane. Gasoline engines tend to produce higher noise levels compared to diesel engines or electric motors. However, advancements in engine technology have led to quieter gasoline engines with improved noise control.
3. Operating Conditions:
The operating conditions of the gas air compressor can affect the noise level. Factors such as the load capacity, speed of operation, and ambient temperature can influence the amount of noise generated. Compressors operating at higher loads or speeds may produce more noise compared to those running at lower levels.
4. Noise-Reducing Features:
Some gas air compressors are equipped with noise-reducing features to minimize sound emissions. These may include built-in silencers, acoustic enclosures, or noise-absorbing materials. Such features help dampen the noise produced by the compressor and reduce its overall noise level.
5. Manufacturer Specifications:
Manufacturers often provide noise level specifications for their gas air compressors. These specifications typically indicate the sound pressure level (SPL) in decibels (dB) at a specific distance from the compressor. It is important to refer to these specifications to get an idea of the expected noise level of a particular compressor model.
6. Distance and Location:
The distance between the gas air compressor and the listener can impact the perceived noise level. As sound waves disperse, the noise level decreases with distance. Locating the compressor in an area that is isolated or distant from occupied spaces can help minimize the impact of noise on the surrounding environment.
It is important to note that gas air compressors, especially those used in industrial or heavy-duty applications, can generate substantial noise levels. Occupational health and safety regulations may require the use of hearing protection for individuals working in close proximity to loud compressors.
Overall, the noise level of gas air compressors can vary, and it is advisable to consult the manufacturer’s specifications and consider noise-reducing features when selecting a compressor. Proper maintenance, such as regular lubrication and inspection of components, can also help minimize noise levels and ensure optimal performance.
Can Gas Air Compressors Be Used for Natural Gas Compression?
Gas air compressors are not typically used for natural gas compression. Here’s a detailed explanation:
1. Different Compressed Gases:
Gas air compressors are specifically designed to compress atmospheric air. They are not typically designed or suitable for compressing natural gas. Natural gas, which is primarily composed of methane, requires specialized compressors designed to handle the unique properties and characteristics of the gas.
2. Safety Considerations:
Natural gas compression involves handling a flammable and potentially hazardous substance. Compressing natural gas requires specialized equipment that meets stringent safety standards to prevent leaks, minimize the risk of ignition or explosion, and ensure the safe handling of the gas. Gas air compressors may not have the necessary safety features or materials to handle natural gas safely.
3. Equipment Compatibility:
Natural gas compression systems typically include components such as gas compressors, gas coolers, separators, and control systems that are specifically designed and engineered for the compression and handling of natural gas. These components are built to withstand the specific demands and conditions associated with natural gas compression, including the high pressures and potential presence of impurities.
4. Efficiency and Performance:
Compressing natural gas requires specialized compressors that can handle the high-pressure ratios and volumetric flow rates associated with the gas. Gas air compressors are generally not designed to achieve the same compression ratios and performance levels required for natural gas compression. Using gas air compressors for natural gas compression would likely result in inefficient operation and suboptimal performance.
5. Regulatory Compliance:
Compressing natural gas is subject to various regulations and standards to ensure safety, environmental protection, and compliance with industry guidelines. These regulations often dictate specific requirements for equipment, materials, and operating procedures in natural gas compression systems. Gas air compressors may not meet these regulatory requirements for natural gas compression.
6. Industry Standards and Practices:
The natural gas industry has well-established standards and best practices for equipment selection, installation, and operation in gas compression systems. These standards are based on the specific requirements and characteristics of natural gas. Gas air compressors do not align with these industry standards and practices, which are essential for safe and efficient natural gas compression.
In summary, gas air compressors are not suitable for natural gas compression. Natural gas compression requires specialized equipment designed to handle the unique properties and safety considerations associated with the gas. Compressors specifically engineered for natural gas compression offer the necessary performance, safety features, and regulatory compliance required for efficient and reliable operation in natural gas compression systems.
Are There Different Types of Gas Air Compressors Available?
Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:
1. Reciprocating Gas Air Compressors:
Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.
2. Rotary Screw Gas Air Compressors:
Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.
3. Rotary Vane Gas Air Compressors:
Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.
4. Centrifugal Gas Air Compressors:
Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.
5. Oil-Free Gas Air Compressors:
Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.
6. Portable Gas Air Compressors:
Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.
7. High-Pressure Gas Air Compressors:
High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.
8. Biogas Air Compressors:
Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.
These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.


editor by CX 2023-10-01
China high quality CHINAMFG Official China 7.5kw 380V Screw Air Compressor Price air compressor oil
Product Description
XCMG Official China 7.5kw 380V Screw Air Compressor
Product Description
Noise enclosure
It is designed into fully-closed mute box, in which sound-absorbing sponge are attached for effective absorption of noise,thereby making the noise 3-5dB(A) lower than that made by the compressors of the same kind.It is reasonably structured overall and very easy to maintain and repair.
Control Panel
Intelligent microcomputer-based control technology can monitor and control in all aspects the complete machine following your instructions. Remote control realizes unattended operation, and the user-friendly human-machine interface displays instructions and parameters in written form. Also, it can function to self diagnose faults,give warning and automatically regulate the capacity.
Motor
First-class motors are adopted, with the level of protection being Ip54 and insulation level being F.overall and very easy to maintain and repair.
Cooler
It is designed for low temperature difference to increase heat exchange area, and ideal to be applied to high-temperature and high-humidity operating environment.
Configuration characteristics
1. A precisely-made central bracket is used to keep the motor aligned permanently with the bare compressor
2. A highly resilient coupling is adopted to make the compressor operate smoothly, and the elastomer is long in useful life
3. The exhaust pipe adopts double-layer bellows, and the oil circuit adopts specially-made temperature-resistant 125º C high-pressure hose
4. For the extremely high temperature condition in some districts, the large-area plate heat exchange and high-efficiency water chiller are used
5. High-quality shaft coupling elastic body can buffer and compensate for the imbalanced moment of operation.
Product Parameters
|
Model |
Air flow |
pressure |
Motor power |
Caliber |
Noise |
Cooling air volume |
Cooling water |
|
m ³/min |
MPa |
kW |
dB(A) |
m ³/min |
L/min |
||
|
LA-7GA |
1.35 |
0.7 |
7.5 |
G1/2 |
62±2 |
32.5 |
|
|
1.25 |
0.8 |
||||||
|
1.01 |
1 |
||||||
|
0.9 |
1.25 |
||||||
|
LA-11GA |
1.8 |
0.7 |
11 |
G3/4 |
63±2 |
50 |
|
|
1.78 |
0.8 |
||||||
|
1.55 |
1 |
||||||
|
1.3 |
1.25 |
||||||
|
LA-15GA |
2.5 |
0.7 |
15 |
G3/4 |
63±2 |
50 |
|
|
2.4 |
0.8 |
||||||
|
2.1 |
1 |
||||||
|
1.8 |
1.25 |
||||||
|
LA-18GA |
3.1 |
0.7 |
18.5 |
G1 |
64±2 |
100 |
|
|
3 |
0.8 |
||||||
|
2.7 |
1 |
||||||
|
2.3 |
1.25 |
||||||
|
LA-22GA/W |
3.8 |
0.7 |
22 |
G1 |
64±2 |
110 |
14.5 |
|
3.7 |
0.8 |
||||||
|
3.2 |
1 |
||||||
|
2.8 |
1.25 |
||||||
|
LA-30GA/W |
5.4 |
0.7 |
30 |
G1 |
65±2 |
145 |
20 |
|
5.25 |
0.8 |
||||||
|
4.5 |
1 |
||||||
|
3.9 |
1.25 |
||||||
|
LA-37GA/W |
6.6 |
0.7 |
37 |
G1 ½ |
65±2 |
145 |
25 |
|
6.6 |
0.8 |
||||||
|
5.9 |
1 |
||||||
|
4.8 |
1.25 |
||||||
|
LA-45GA/W |
8.4 |
0.7 |
45 |
G1 ½ |
66±2 |
185 |
30 |
|
8 |
0.8 |
||||||
|
7.4 |
1 |
||||||
|
6.4 |
1.25 |
||||||
|
LA-55GA/W |
10.8 |
0.7 |
55 |
G2 |
68±2 |
220 |
39.9 |
|
10 |
0.8 |
||||||
|
9.1 |
1 |
||||||
|
8 |
1.25 |
||||||
|
LA-75GA/W |
13.8 |
0.7 |
75 |
G2 |
72±2 |
250 |
51 |
|
13 |
0.8 |
||||||
|
11.8 |
1 |
||||||
|
10.3 |
1.25 |
||||||
|
LA-90GA/W |
17.1 |
0.7 |
90 |
G2 |
72±2 |
270 |
61 |
|
17 |
0.8 |
||||||
|
15.2 |
1 |
||||||
|
12.5 |
1.25 |
||||||
|
LA-110GA/W |
21.2 |
0.7 |
110 |
G2 1/2 |
75±2 |
420 |
79 |
|
20 |
0.8 |
||||||
|
17.1 |
1 |
||||||
|
15.4 |
1.25 |
||||||
|
LA-132GA/W |
25 |
0.7 |
132 |
G2 1/2 |
75±2 |
460 |
91 |
|
24.3 |
0.8 |
||||||
|
21 |
1 |
||||||
|
17.5 |
1.25 |
||||||
|
LA-160GA/W |
30.5 |
0.7 |
160 |
G2 1/2 |
75±2 |
510 |
105 |
|
29.2 |
0.8 |
||||||
|
26.9 |
1 |
||||||
|
22.5 |
1.25 |
||||||
|
LA-185GA/W |
32.9 |
0.7 |
185 |
G2 1/2 |
75±2 |
510 |
123 |
|
31.9 |
0.8 |
||||||
|
29.1 |
1 |
||||||
|
25.5 |
1.25 |
||||||
|
LA-220GA/W |
37 |
0.7 |
220 |
DN80 |
75±2 |
710 |
144 |
|
36.3 |
0.8 |
||||||
|
31.63 |
1 |
||||||
|
28.55 |
1.25 |
||||||
|
LA-250GA/W |
45.8 |
0.7 |
250 |
DN80 |
75±2 |
800 |
163 |
|
44 |
0.8 |
||||||
|
39 |
1 |
||||||
|
35.5 |
1.25 |
Product Picture
Company Profile
FAQ
1: What kind terms of payment can be accepted?
A: For terms of payment, L/C, T/T, D/A, D/P, Western Union (can be) could accepted.
2: What certificates are available in Machinery?
A: For the certificate, we have CE, ISO, Gost, EPA(USA)CCC.
3: What about the delivery time?
A: 7-30 days after receiving the deposit.
4: What about the warranty time?
A: 12 months after shipment or 2000 working hours, whichever occuts first.
5. What about the Minimum Order Quantity?
A: The MOQ is 1 pcs.
| After-sales Service: | Overseas Service Center Available |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
.webp)
Are there special considerations for air compressor installations in remote areas?
Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:
1. Power Source:
Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.
2. Environmental Conditions:
Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.
3. Accessibility and Transport:
Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.
4. Maintenance and Service:
In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.
5. Fuel and Lubricants:
For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.
6. Noise and Environmental Impact:
Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.
7. Communication and Remote Monitoring:
Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.
By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
What maintenance is required for air compressors?
Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:
1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.
2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.
3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.
4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.
5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.
6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.
7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.
8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.
9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.
10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.
Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.


editor by CX 2023-10-01