Product Description
Advantages of CHINAMFG Process Gas Compressor:
1. High quality material, Stable & Reliable operation
2. Low Maintenance cost & Low noise
3. Easy to install on site and connect with the user’s pipeline system to operate
4. Alarm automatic shutdown to protection machine function
5. Corrosion Resistance
Lubrication includes : Oil lubrication, low-oil lubrication and oil free lubrication;
Cooling method includes: Water cooling, and air cooling.
Installation type includes: Stationary and Skid Mounting.
M-type Reciprocating Compressor
CHINAMFG has developed models for M3.5,M5.5,M8,M16,M25,M32 and M50 series piston compressors. The products are stable,reliable and have already been in series and modularized.CHINAMFG can aslo rapidly provide products of other specifications through modular combination design CHINAMFG users’ requirements.
Besides general gas such as air, the compressed medium may also include flammable and explosive gas, such Natural Gas and Coal Gas as well as special gas which are toxic and corrosive. CHINAMFG has taken a series of technical measures in aspects such as structure material, explosion prevention, anto-control and protection to guarantee safety and reliability. Products are widely used in variety of industries such as Petrochemicals, Fine Chemicals, Pharmaceutical Chemicals, Energy Chemicals, Machinery Industry, Electronics Industry, Agriculture, Animal Husbandry and Defense Industry, Astronomy, Aerospace, Medical and other fields.
Inquiry to us!
Note:for the other customizing process gas compressor, please kindly send below information to our factory to calculate the producing cost for your item.
Clients’ inquiries should contain related parameters
A. The gas compression medium
B. Gas composition? or the gas purity?
C. The flow rate: _____Nm3/hr
D. Inlet pressure: _____ Bar (gauge pressure or absolute pressure)
E. Discharge pressure: _____ Bar (gauge pressure or absolute pressure)
F. Inlet temperature
G.Discharge temperature
H. Cooling water temperature as well as other technical requirement.
M Piston type Compressor Technical Parameters | ||||||||||
No. | Model | Compressed medium | F.A.D (Nm3/min) | Inlet Pressure ( Mpa) |
Exhuast Pressure (Mpa) |
Power (KW) |
Speed r/min |
Dimension (L×W×H)mm |
N.W Weight (t) |
Voltage V |
1 | 4M-12/2.5~250 | Carbon dioxide gas | 12 | 0.25 | 25 | 450 | 420 | 6130*3400*2000 | 21.5 | 10000 |
2 | 4M-40/21 | coal gas | 40N | 0.001~0.571 | 2.1 | 450 | 420 | 5800*4300*3800 | 25 | 10000 |
3 | 4M3.5W-12.4/11 | Hydrogen chloride gas | 12.4N | Atmospheric pressure | 1.1 | 132 | 485 | 5600*1600*2300 | 16.5 | 380 |
4 | 4M5.5-113/0.1~3.2 | Feed gas | 113N | 0.01 | 0.32 | 560 | 450 | 6110*4230*5480 | 23 | 6000 |
5 | 4M5.5W-90/1~12 | Synthetic tail gas | 90N | 0.1 | 1.2 | 560 | 450 | 5700*3600*2750 | 15 | 10000 |
6 | 4M5.5W-90/1~9 | Synthetic tail gas | 90N | 0.1 | 0.9 | 500 | 420 | 5700*3600*2750 | 15 | 10000 |
7 | 4M5.5W-50/0.12~18 | coal gas | 50N | 0.012 | 1.8 | 500 | 485 | 6110*4230*5480 | 23 | 10000 |
8 | 4M8W-83.5/0.1-13 | stripping gas | 83.5N | 0.01 | 1.3 | 630 | 375 | 5426x3400x2642 | 21 | 6000 |
9 | 4M8W-50/32 | oxygen | 50N | 0.015 | 3.2 | 550 | 420 | 5900x3400x1700 | 22 | 10000 |
10 | 4M8W-50/20 | High purity oxygen | 50N | 0.001 | 2 | 550 | 420 | 5900x3400x1700 | 22 | 10000 |
11 | 4M8-38/320 | Nitrogen and hydrogen | 38N | 0.026 | 31.4 | 630 | 485 | 6000x3100x1400 | 23 | 6000 |
12 | 4M8W-46/38 | petroleum gas | 46N | 0.0045 | 3.8 | 500 | 420 | 6000x3100x3500 | 22 | 6000 |
13 | 4M8W-99.8/6.5-50 | hydrogen | 99.8N | 0.65 | 5 | 550 | 420 | 6000x3000x1200 | 21 | 6000 |
14 | 4M16-55/210 | CO2 | 55N | 0.01 | 21 | 800 | 375 | 6400x3600x1900 | 25 | 6000 |
15 | 4M16W-108/12 | stripping gas | 108N | 0.08 | 1.2 | 800 | 333 | 6500x3800x2200 | 27 | 6000 |
16 | 4M16W-73/25 | coal gas | 73N | 0.98(A) | 2.5 | 750 | 368 | 6400x3600x1900 | 26 | 6000 |
17 | 4M16-90/5-88 | New hydrogen | 90N | 0.5 | 8.8 | 710 | 371 | 6700x3800x3400 | 25 | 6000 |
18 | 4M25-75/320 | Nitrogen and hydrogen | 75N | 0.026 | 31.4 | 1250 | 375 | 6900x3500x3400 | 32 | 10000 |
19 | 4M25-85/210 | Carbon dioxide | 85N | 0.03 | 21 | 1250 | 375 | 6900x3500x3400 | 25 | 6000 |
20 | 4M25W-127/28 | hydrogen | 127N | 0.01 | 2.8 | 1100 | 333 | 6900x5000x3620 | 38.9 | 10000 |
21 | 4M25-181/10 | stripping gas | 181N | 0.1 | 1 | 1200 | 333 | 7100x5100x3500 | 41 | 6000 |
22 | 4MW-106.7/0.3~13 | Analytical gas | 106.7N | 0.03 | 1.3 | 800 | 420 | 6200*4500*3750 | 21 | 10000 |
23 | 4MW-80/0.03~18 | coal gas | 80N | 0.003 | 1.8 | 800 | 485 | 6200*4400*3750 | 21 | 10000 |
24 | 4M32W-408.3/0.1~7.2 | Butane gas | 408.3N | 0.01 | 0.72 | 2200 | 333 | 8600*8700*3780 | 74 | 10000 |
25 | 4M32W-340/21 | coke oven gas | 340 | Normal | 2.1 | 2600 | 300 | 8400*4300*1600 | 40 | 6000 |
26 | 4M32-150/152 | Carbon dioxide | 150 | Normal | 152 | 1800 | 300 | 8400*4300*1600 | 44 | 6000 |
27 | 4M32W-197/16 | coal gas | 197N | Micro positive pressure | 1.6 | 1800 | 333 | 8600*8700*5200 | 74 | 10000 |
28 | 4M32W-109/0.2~35 | Methane gas | 109N | 0.02 | 3.5 | 1250 | 333 | 8500*8300*5200 | 60 | 10000 |
29 | 4M32W-134/0.2~16.2 | Propylene gas | 134N | 0.02 | 1.62 | 1200 | 333 | 8500*8300*5200 | 60 | 10000 |
30 | 4M50W-375/20 | coal gas | 375N | Normal | 2 | 2800 | 300 | 9000*4300*1800 | 45 | 6000 |
31 | 4M50W-148/300 | Nitrogen and hydrogen | 148N | Normal | 32 | 2500 | 333 | 9200*7500*3000 | 42 | 6000 |
32 | 4M50W-310/0.15~14 | coal gas | 310N | 0.015 | 1.4 | 2600 | 333 | 8700*8700*5200 | 65 | 10000 |
33 | 4M80-515/22~133 | Hydrogen gas | 515N | 2.2 | 13.3 | 2800 | 300 | 9500*9000*5000 | 90 | 10000 |
34 | 4M80-40/20~172 | Hydrogen gas | 40 | 2 | 17.2 | 4200 | 300 | 9500*9000*5000 | 90 | 10000 |
35 | 6M32W-334/12 | coal gas | 334N | Micro positive pressure | 1.2 | 2000 | 300 | 8400*9000*5600 | 95 | 10000 |
36 | 6M32W-450/0.1~7.2 | coal gas | 450N | 0.01 | 0.72 | 2800 | 300 | 8400*9000*5600 | 95 | 10000 |
37 | 6M32W-200/22 | Hydrogen gas | 200N | Micro positive pressure | 2.2 | 2000 | 333 | 8200*8700*5000 | 87 | 10000 |
38 | 6M50W-293/0.1~30 | coal gas | 293N | 0.01 | 3 | 3150 | 300 | 9000*9400*5000 | 105 | 10000 |
39 | 6M50-249/81 | Carbon dioxide | 248N | Micro positive pressure | 8.1 | 3550 | 300 | 9000*9400*5000 | 105 | 10000 |
Test and inspection
1. Part Material Inspection: Before shipment inspecting the mechanical properties and chemical composition of the following parts and provide inspection reports: cylinder, cylinder head, crankshaft, crankcase, main bearing, connecting rod, piston rod, piston rod, cross head, connecting rod bush connecting bolt, cross head pin, etc.
2. Nondestructive inspection: the supplier shall perform non-destructive inspection of the following parts.
Hydrostatic test and pressure test
The test pressure of cylinder block, cylinder head, piston and other compressed parts is at least 1.5 times of the maximum allowable working pressure, and lasts more than 30 minutes. The test pressure of the above parts of the water chamber is at least 1.5 times the maximum allowable working pressure, not less than 0.6MPa.
Our services:
CHINAMFG Provides Top-Rated, Efficient Reciprocating Compressors And Parts. Energy Efficient. Industry Leading Warranty. Low Maintenance. Gas Solution Engineer and Easy Install, promises to give a definite reply within 6 hours for the after-sales product service, can provide overseas Installation service. We can customize all kinds of standard air compressor, flammable gas compressor, toxin gas compressor of reciprocating compressor & diaphragm compressor.
What is advantages of our company?
Right Compressor Right Solution Gas Engineer Company
Whether centrifugal, screw or reciprocating, CHINAMFG is the sole multi-compressor provider for you.
The Best Quality, The Most Reliability
What is need to consider when purchase a correct compressor Upgrade Your Gas Compressor to Save Money & Energy Consumption Gas compressors are a vital part of many industry applications.
Save money and energy in your industrial workplace by upgrading your gas compressor today!
FAQ
Q1: What’s your delivery time?
A: Generally for standard air compressor is 15 days if there are stocks with regular 380V/50Hz/3ph.
Special customizing compressors with 30days production date for Screw Compressor, 90days for diaphragm compressor & reciprocating process gas compressor.
Q2: How long is your gas compressor warranty?
A: Usually 1 year /12 Months for whole compressor machine, 2years/24months for air end (except maintenance spare parts.). And we can provide further warranty if necessary.
Q3: How long could your air compressor be used?
A: Generally, more than 10 years.
Q4: Can you do OEM for us?
A: Yes, of course. We have around 2 decades OEM experience.And also we can do ODM for you.
Q5: What’s payment term?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, Trade Assurance and etc. Also we could accept USD, RMB, GBP, Euro and other currency.
Q6: How about your customer service?
A: 24 hours on-line service available. 48hours problem sovled promise.
Q7: How about your after-sales service?
A: 1. Provide customers with intallation and commissioning online instructions.
2. Well-trained engineers available to overseas after-sales service.
Q8. Are you factory?
A4: Absolutely! You have touched the primary sources of Air /Gas Compressor. We are factory.
How to contact with us?
Send your Inquiry Details in the Below, or Click “Send inquiry to supplier” to check more other Gas Compressor machine equipment!
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Lubrication Style: | Oil-less |
---|---|
Cooling System: | Water Cooling |
Power Source: | AC Power |
Cylinder Position: | Horizontal |
Structure Type: | Closed Type |
Installation Type: | Stationary Type |
Samples: |
US$ 38000/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How Do You Troubleshoot Common Issues with Gas Air Compressors?
Troubleshooting common issues with gas air compressors involves identifying and addressing potential problems that may arise during operation. Here’s a detailed explanation of the troubleshooting process:
1. Start with Safety Precautions:
Prior to troubleshooting, ensure that the gas air compressor is turned off and disconnected from the power source. Follow proper safety procedures, such as wearing appropriate personal protective equipment (PPE), to avoid accidents or injuries.
2. Check Power Supply and Connections:
Verify that the compressor is receiving power and that all electrical connections are secure. Inspect the power cord, plug, and any switches or controls to ensure they are functioning properly. If the compressor is equipped with a battery, check its charge level and connections.
3. Check Fuel Supply:
For gas air compressors that use gasoline or propane, ensure that there is an adequate fuel supply. Check the fuel tank level and verify that the fuel shut-off valve is open. If the compressor has been sitting idle for an extended period, old or stale fuel may cause starting issues. Consider draining and replacing the fuel if necessary.
4. Inspect Air Filters:
Dirty or clogged air filters can restrict airflow and affect the compressor’s performance. Check the intake air filters and clean or replace them as needed. Clogged filters can be cleaned with compressed air or washed with mild detergent and water, depending on the type of filter.
5. Check Oil Level and Quality:
If the gas air compressor has an engine with an oil reservoir, verify the oil level using the dipstick or oil level indicator. Insufficient oil can lead to engine damage or poor performance. Additionally, check the oil quality to ensure it is clean and within the recommended viscosity range. If needed, change the oil following the manufacturer’s guidelines.
6. Inspect Spark Plug:
If the gas air compressor uses a spark plug ignition system, inspect the spark plug for signs of damage or fouling. Clean or replace the spark plug if necessary, following the manufacturer’s recommendations for gap setting and torque.
7. Check Belts and Pulleys:
Inspect the belts and pulleys that drive the compressor pump. Loose or worn belts can cause slippage and affect the compressor’s performance. Tighten or replace any damaged belts, and ensure that the pulleys are properly aligned.
8. Listen for Unusual Noises:
During operation, listen for any unusual or excessive noises, such as grinding, rattling, or squealing sounds. Unusual noises could indicate mechanical issues, loose components, or improper lubrication. If identified, consult the compressor’s manual or contact a qualified technician for further inspection and repair.
9. Consult the Owner’s Manual:
If troubleshooting steps do not resolve the issue, refer to the compressor’s owner’s manual for specific troubleshooting guidance. The manual may provide additional troubleshooting steps, diagnostic charts, or recommended maintenance procedures.
10. Seek Professional Assistance:
If the issue persists or if you are unsure about performing further troubleshooting steps, it is recommended to seek assistance from a qualified technician or contact the manufacturer’s customer support for guidance.
Remember to always prioritize safety and follow proper maintenance practices to prevent issues and ensure the reliable performance of the gas air compressor.
How Do Gas Air Compressors Contribute to Energy Savings?
Gas air compressors can contribute to energy savings in several ways. Here’s a detailed explanation:
1. Efficient Power Source:
Gas air compressors are often powered by gasoline or diesel engines. Compared to electric compressors, gas-powered compressors can provide higher power output for a given size, resulting in more efficient compression of air. This efficiency can lead to energy savings, especially in applications where a significant amount of compressed air is required.
2. Reduced Electricity Consumption:
Gas air compressors, as standalone units that don’t rely on electrical power, can help reduce electricity consumption. In situations where the availability of electricity is limited or expensive, using gas air compressors can be a cost-effective alternative. By utilizing fuel-based power sources, gas air compressors can operate independently from the electrical grid and reduce dependence on electricity.
3. Demand-Sensitive Operation:
Gas air compressors can be designed to operate on demand, meaning they start and stop automatically based on the air requirements. This feature helps prevent unnecessary energy consumption during periods of low or no compressed air demand. By avoiding continuous operation, gas air compressors can optimize energy usage and contribute to energy savings.
4. Energy Recovery:
Some gas air compressors are equipped with energy recovery systems. These systems capture and utilize the heat generated during the compression process, which would otherwise be wasted. The recovered heat can be redirected and used for various purposes, such as space heating, water heating, or preheating compressed air. This energy recovery capability improves overall energy efficiency and reduces energy waste.
5. Proper Sizing and System Design:
Selecting the appropriate size and capacity of a gas air compressor is crucial for energy savings. Over-sizing a compressor can lead to excessive energy consumption, while under-sizing can result in inefficient operation and increased energy usage. Properly sizing the compressor based on the specific air demands ensures optimal efficiency and energy savings.
6. Regular Maintenance:
Maintaining gas air compressors in good working condition is essential for energy efficiency. Regular maintenance, including cleaning or replacing air filters, checking and repairing leaks, and ensuring proper lubrication, helps optimize compressor performance. Well-maintained compressors operate more efficiently, consume less energy, and contribute to energy savings.
7. System Optimization:
For larger compressed air systems that involve multiple compressors, implementing system optimization strategies can further enhance energy savings. This may include employing advanced control systems, such as variable speed drives or sequencers, to match compressed air supply with demand, minimizing unnecessary energy usage.
In summary, gas air compressors contribute to energy savings through their efficient power sources, reduced electricity consumption, demand-sensitive operation, energy recovery systems, proper sizing and system design, regular maintenance, and system optimization measures. By utilizing gas-powered compressors and implementing energy-efficient practices, businesses and industries can achieve significant energy savings in their compressed air systems.
What Fuels Are Commonly Used in Gas Air Compressors?
Gas air compressors can be powered by various fuels depending on the specific model and design. The choice of fuel depends on factors such as availability, cost, convenience, and environmental considerations. Here’s a detailed explanation of the fuels commonly used in gas air compressors:
1. Gasoline:
Gasoline is a widely used fuel in gas air compressors, particularly in portable models. Gasoline-powered compressors are popular due to the widespread availability of gasoline and the convenience of refueling. Gasoline engines are generally easy to start, and gasoline is relatively affordable in many regions. However, gasoline-powered compressors may emit more exhaust emissions compared to some other fuel options.
2. Diesel:
Diesel fuel is another common choice for gas air compressors, especially in larger industrial models. Diesel engines are known for their efficiency and durability, making them suitable for heavy-duty applications. Diesel fuel is often more cost-effective than gasoline, and diesel-powered compressors typically offer better fuel efficiency and longer runtime. Diesel compressors are commonly used in construction sites, mining operations, and other industrial settings.
3. Natural Gas:
Natural gas is a clean-burning fuel option for gas air compressors. It is a popular choice in areas where natural gas infrastructure is readily available. Natural gas compressors are often used in natural gas processing plants, pipeline operations, and other applications where natural gas is abundant. Natural gas-powered compressors offer lower emissions compared to gasoline or diesel, making them environmentally friendly.
4. Propane:
Propane, also known as liquefied petroleum gas (LPG), is commonly used as a fuel in gas air compressors. Propane-powered compressors are popular in construction, agriculture, and other industries where propane is used for various applications. Propane is stored in portable tanks, making it convenient for use in portable compressors. Propane-powered compressors are known for their clean combustion, low emissions, and easy availability.
5. Biogas:
In specific applications, gas air compressors can be fueled by biogas, which is produced from the decomposition of organic matter such as agricultural waste, food waste, or wastewater. Biogas compressors are used in biogas production facilities, landfills, and other settings where biogas is generated and utilized as a renewable energy source. The use of biogas as a fuel in compressors contributes to sustainability and reduces dependence on fossil fuels.
It’s important to note that the availability and suitability of these fuel options may vary depending on the region, infrastructure, and specific application requirements. When selecting a gas air compressor, it’s crucial to consider the compatibility of the compressor with the available fuel sources and to follow the manufacturer’s guidelines regarding fuel selection, storage, and safety precautions.
editor by CX 2024-05-07
China Best Sales 55kw/75HP Direct Drive Screw Air Compressor Wholesale for Industry small air compressor
Product Description
Product Description
ZIQI CHINAMFG Screw Air Compressor Advantages:
A.80% components of CHINAMFG Compressor adopt global well known reliable brand to make sure the air compressor with high quality,durable,energy saving:
1.Core part:Germany GHH RAND screw air end ;
2.Motor:adopt Brazil WEG brand,the second biggest motor manufacturer in the world,IE4 energy saving standard 3 phase induction motor,IP55 protection;
3.Italian EURE oil air vessel ,the lead pressure vessel manufacturer in the world;
4.Italian Manuli oil tube ;
5.French Schneider electric system;
6.Sweden CHINAMFG bearings
Energy saving:
The air compressor equiped the frequency inverter,to make the air compressor with variable speed drive [VSD].The principle of VSD is to adjust the motor rotation speed automatically according to the actual air consumption. The reduced system pressure decreases the total energy consumption of the whole system, which can reduce energy costs by 35% or more.
Technical Parameter
Model | Air pressure | Max air displacement | Motor power | transmission | dimension | Weight | Noise | Outlet | ||||||
cooling type | ||||||||||||||
mpa | bar(e) | psi(g) | m3/min | cfm | hp | kw | belt drive & air cooling |
L(mm) | W(mm) | H(mm) | Kgs | dB(A) | mm | |
GA-3.7A | 0.7 | 7 | 102 | 0.55 | 19 | 5 | 3.7 | 680 | 660 | 780 | 220 | 60±2 | 20 | |
0.8 | 8 | 116 | 0.45 | 16 | ||||||||||
1 | 10 | 145 | 0.35 | 12 | ||||||||||
GA-5.5A | 0.7 | 7 | 102 | 0.8 | 28 | 7 | 5.5 | 680 | 660 | 780 | 230 | 61±2 | 20 | |
0.8 | 8 | 116 | 0.7 | 25 | ||||||||||
1 | 10 | 145 | 0.6 | 21 | ||||||||||
1.3 | 13 | 189 | 0.5 | 18 | ||||||||||
GAS-7.5A VFC | 0.7 | 7 | 102 | 1.3 | 46 | 10 | 7.5 | 950 | 650 | 915 | 270 | 62±2 | 20 | |
0.8 | 8 | 116 | 1.2 | 42 | ||||||||||
1 | 10 | 145 | 1.1 | 39 | ||||||||||
1.3 | 13 | 189 | 0.9 | 32 | ||||||||||
GAS-11A VFC | 0.7 | 7 | 102 | 1.8 | 64 | 15 | 11 | 950 | 650 | 915 | 280 | 63±2 | 20 | |
0.8 | 8 | 116 | 1.7 | 60 | ||||||||||
1 | 10 | 145 | 1.5 | 53 | ||||||||||
1.3 | 13 | 189 | 1.2 | 42 | ||||||||||
GAS-15A VFC | 0.7 | 7 | 102 | 2.7 | 95 | 20 | 15 | 1260 | 850 | 1220 | 540 | 66±2 | 25 | |
0.8 | 8 | 116 | 2.5 | 88 | ||||||||||
1 | 10 | 145 | 2.3 | 81 | ||||||||||
1.3 | 13 | 189 | 2 | 71 | ||||||||||
GAS-18.5A VFC | 0.7 | 7 | 102 | 3.2 | 113 | 25 | 18.5 | 1260 | 850 | 1220 | 550 | 67±2 | 25 | |
0.8 | 8 | 116 | 3 | 106 | ||||||||||
1 | 10 | 145 | 2.8 | 99 | ||||||||||
1.3 | 13 | 189 | 2.4 | 85 | ||||||||||
GAS-22A VFC | 0.7 | 7 | 102 | 3.8 | 134 | 30 | 22 | 1260 | 850 | 1220 | 560 | 67±2 | 25 | |
0.8 | 8 | 116 | 3.6 | 127 | ||||||||||
1 | 10 | 145 | 3.2 | 113 | ||||||||||
1.3 | 13 | 189 | 2.8 | 99 | ||||||||||
GAS-30A VFC | 0.7 | 7 | 102 | 5.7 | 201 | 40 | 30 | 1500 | 970 | 1375 | 780 | 67±2 | 40 | |
0.8 | 8 | 116 | 5.5 | 194 | ||||||||||
1 | 10 | 145 | 5 | 177 | ||||||||||
1.3 | 13 | 189 | 4.5 | 159 | ||||||||||
GAS-37A VFC | 0.7 | 7 | 102 | 6.8 | 240 | 50 | 37 | 1500 | 970 | 1375 | 800 | 68±2 | 40 | |
0.8 | 8 | 116 | 6.31 | 222 | ||||||||||
1 | 10 | 145 | 5.7 | 201 | ||||||||||
1.3 | 13 | 189 | 5 | 177 | ||||||||||
GAS-45A VFC | 0.7 | 7 | 102 | 7.9 | 279 | 60 | 45 | 1500 | 970 | 1375 | 820 | 69±2 | 40 | |
0.8 | 8 | 116 | 7.4 | 261 | ||||||||||
1 | 10 | 145 | 6.9 | 244 | ||||||||||
1.3 | 13 | 189 | 6.1 | 215 | ||||||||||
GAS-55A VFC | 0.7 | 7 | 102 | 10.9 | 385 | 75 | 55 | direct drive &air cooling or water cooling | 2150 | 1326 | 1766 | 1550 | 69±2 | 50 |
0.8 | 8 | 116 | 10.4 | 367 | ||||||||||
1 | 10 | 145 | 9.4 | 332 | ||||||||||
1.3 | 13 | 189 | 8.6 | 304 | ||||||||||
GAS-75A VFC | 0.7 | 7 | 102 | 14.5 | 512 | 100 | 75 | 2150 | 1326 | 1766 | 1600 | 70±2 | 50 | |
0.8 | 8 | 116 | 13.8 | 487 | ||||||||||
1 | 10 | 145 | 12.6 | 445 | ||||||||||
1.3 | 13 | 189 | 11.2 | 395 | ||||||||||
GAS-90A VFC | 0.7 | 7 | 102 | 17 | 600 | 120 | 90 | 2545 | 1450 | 1900 | 2500 | 75±2 | 65 | |
0.8 | 8 | 116 | 16.5 | 583 | ||||||||||
1 | 10 | 145 | 15.2 | 537 | ||||||||||
1.3 | 13 | 189 | 14 | 494 |
*For other requirements,please contact the salesman.
Company Information
Packaging & Shipping
FAQ
Are you manufacturer?
ZIQI: Yes,we are professional air compressor manufacturer over 10 years and our factory located in ZheJiang .
How long is your air compressor warranty?
ZIQI: For 1 year.
Do you provide After- sales service parts?
ZIQI: Of course, We could provide easy- consumable spares.
How long could your air compressor be used?
ZIQI: Generally, more than 10 years.
How about your price?
ZIQI: Based on high quality, Our price is very competitive in this market all over the world.
How about your customer service?
ZIQI: For email, we could reply our customers’ emails within 2 hours.
Do you support OEM?
ZIQI: YES, and we also provide multiple models to select.
How to get quicker quotation?
When you send us inquiry, please confirm below information at the same time:
* What is the air displacement (m3/min,cfm/min)?
* What is the air pressure (mpa,bar,psi)?
* What is the voltage in your factory (v/p/Hz)?
* It is ok if you need air tank, air dryer and filters.
This information is helpful for us to check suitable equipment solution and quotation quickly.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Support |
---|---|
Warranty: | 2 Years |
Lubrication Style: | Lubricated |
Cooling System: | Air Cooling |
Power Source: | AC Power |
Cylinder Position: | Vertical |
Customization: |
Available
|
|
---|
How Do Gas Air Compressors Compare to Diesel Air Compressors?
When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:
1. Fuel Efficiency:
Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.
2. Power Output:
Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.
3. Cost:
In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.
4. Maintenance Requirements:
Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.
5. Environmental Impact:
When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.
6. Portability and Mobility:
Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.
It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.
In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.
How Do You Transport Gas Air Compressors to Different Job Sites?
Transporting gas air compressors to different job sites requires careful planning and consideration of various factors. Here’s a detailed explanation:
1. Equipment Size and Weight:
The size and weight of the gas air compressor are crucial factors to consider when planning transportation. Gas air compressors come in different sizes and configurations, ranging from portable units to larger, skid-mounted or trailer-mounted compressors. Assess the dimensions and weight of the compressor to determine the appropriate transportation method.
2. Transportation Modes:
Gas air compressors can be transported using different modes of transportation, depending on their size, weight, and distance to the job site:
- Truck or Trailer: Smaller gas air compressors can be loaded onto a truck bed or trailer for transportation. Ensure that the vehicle or trailer has the necessary capacity to accommodate the weight and dimensions of the compressor.
- Flatbed or Lowboy Trailer: Larger gas compressors or skid-mounted units may require transportation on a flatbed or lowboy trailer. These trailers are designed to carry heavy equipment and provide stability during transportation.
- Shipping Container: For long-distance transportation or international shipments, gas air compressors can be transported in shipping containers. The compressor must be properly secured and protected within the container to prevent any damage during transit.
3. Securing and Protection:
It is essential to secure the gas air compressor properly during transportation to prevent shifting or damage. Use appropriate tie-down straps, chains, or fasteners to secure the compressor to the transport vehicle or trailer. Protect the compressor from potential impacts, vibrations, and weather conditions by using suitable covers, padding, or weatherproof enclosures.
4. Permits and Regulations:
Depending on the size and weight of the gas air compressor, special permits or escorts may be required for transportation. Familiarize yourself with local, state, and federal regulations regarding oversize or overweight loads, and obtain the necessary permits to ensure compliance with transportation laws.
5. Route Planning:
Plan the transportation route carefully, considering factors such as road conditions, height and weight restrictions, bridges, tunnels, and any other potential obstacles. Identify alternative routes if needed, and communicate with transportation authorities or agencies to ensure a smooth and safe journey.
6. Equipment Inspection and Maintenance:
Prior to transportation, conduct a thorough inspection of the gas air compressor to ensure it is in proper working condition. Check for any leaks, damage, or loose components. Perform routine maintenance tasks, such as oil changes, filter replacements, and belt inspections, to minimize the risk of equipment failure during transportation.
In summary, transporting gas air compressors to different job sites requires considering factors such as equipment size and weight, choosing appropriate transportation modes, securing and protecting the compressor, obtaining necessary permits, planning the route, and conducting equipment inspection and maintenance. Careful planning and adherence to transportation regulations contribute to the safe and efficient transportation of gas air compressors.
What Safety Precautions Should Be Taken When Operating Gas Air Compressors?
Operating gas air compressors safely is essential to prevent accidents, injuries, and equipment damage. It’s important to follow proper safety precautions to ensure a safe working environment. Here’s a detailed explanation of the safety precautions that should be taken when operating gas air compressors:
1. Read and Follow the Manufacturer’s Instructions:
Before operating a gas air compressor, carefully read and understand the manufacturer’s instructions, user manual, and safety guidelines. Follow the recommended procedures, maintenance schedules, and any specific instructions provided by the manufacturer.
2. Provide Adequate Ventilation:
Gas air compressors generate exhaust fumes and heat during operation. Ensure that the operating area is well-ventilated to prevent the accumulation of exhaust gases, which can be harmful or even fatal in high concentrations. If operating indoors, use ventilation systems or open windows and doors to allow fresh air circulation.
3. Wear Personal Protective Equipment (PPE):
Wear appropriate personal protective equipment (PPE) when operating a gas air compressor. This may include safety glasses, hearing protection, gloves, and sturdy footwear. PPE helps protect against potential hazards such as flying debris, noise exposure, and hand injuries.
4. Perform Regular Maintenance:
Maintain the gas air compressor according to the manufacturer’s recommendations. Regularly inspect the compressor for any signs of wear, damage, or leaks. Keep the compressor clean and free from debris. Replace worn-out parts and components as needed to ensure safe and efficient operation.
5. Preventive Measures for Fuel Handling:
If the gas air compressor is powered by fuels such as gasoline, diesel, or propane, take appropriate precautions for fuel handling:
- Store fuel in approved containers and in well-ventilated areas away from ignition sources.
- Refuel the compressor in a well-ventilated outdoor area, following proper refueling procedures and avoiding spills.
- Handle fuel with caution, ensuring that there are no fuel leaks or spills near the compressor.
- Never smoke or use open flames near the compressor or fuel storage areas.
6. Use Proper Electrical Connections:
If the gas air compressor requires electrical power, follow these electrical safety precautions:
- Ensure that the electrical connections and wiring are properly grounded and in compliance with local electrical codes.
- Avoid using extension cords unless recommended by the manufacturer.
- Inspect electrical cords and plugs for damage before use.
- Do not overload electrical circuits or use improper voltage sources.
7. Secure the Compressor:
Ensure that the gas air compressor is securely positioned and stable during operation. Use appropriate mounting or anchoring methods, especially for portable compressors. This helps prevent tipping, vibrations, and movement that could lead to accidents or injuries.
8. Familiarize Yourself with Emergency Procedures:
Be familiar with emergency procedures and know how to shut off the compressor quickly in case of an emergency or malfunction. Have fire extinguishers readily available and know how to use them effectively. Develop an emergency action plan and communicate it to all personnel working with or around the compressor.
It’s crucial to prioritize safety when operating gas air compressors. By following these safety precautions and using common sense, you can minimize the risks associated with compressor operation and create a safer work environment for yourself and others.
editor by CX 2024-04-25
China Custom 150L/Min 3 Kw 4500psi High Pressure Air Compressor Gdr-150e for Scuba Diving/Pcp Paintball small air compressor
Product Description
Product Description
150L/Min 3 Kw 4500psi High Pressure Air Compressor GDR-150E for Scuba Diving/Pcp Paintball
Technical parameter
Model: | GDR-150E |
Charging rate: | 100L/min -5.2cfm |
Filling cylinder time: | 6.0L cylinder 0-330bar/12min |
Working pressure: | Dive 225 Bar Firefighting 330 Bar |
Speed: | 2450 Rpm |
Driven by: | Electric motor |
Power: | 3 kw 1phase |
Dimensions (L*W*H): | 660*400*420mm |
Weight: | 52 Kg |
Compression stage: | 3 |
Lubricating type: | Splash lubrication |
Amount of lubricating oil: | 0.36L |
Opertating temperature: | 5- 45 ºC |
Oil/mosture separator: | After last stage |
Filtration: | Filter cartridge activated carbon and molecular sieve |
Suction filter: | 2 CHINAMFG paper – 25 CHINAMFG polyester |
Application industry
Packaging & Shipping
Company Profile
Certifications
FAQ
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of screw air compressor of HangZhou,ZheJiang ,China. More than 18 years of experience in air compressor manufacturing.
Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.
Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.
Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3.CHINAMFG agents and after service avaiable.arrange our engineers to help you training and installation.
Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.
Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.
Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.
Q8. How do you control quality ?
A: 1. The raw materials are strictly inspected
2. Some key parts are imported from overseas
3. Each compressor must pass at least 5 hours of continuous testing before leaving the factory.
Q9. Do you offer OEM service ?
A: Yes.Both OEM & ODM service can be accepted.
Q10.How long could your air compressor be used?
A: Generally, more than 10 years.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Support |
---|---|
Warranty: | 24months |
Lubrication Style: | Oil-free |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can Gas Air Compressors Be Used for Well Drilling?
Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:
1. Air Drilling Method:
Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.
2. Benefits of Gas Air Compressors:
Gas air compressors offer several advantages for well drilling:
- Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
- Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
- Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
- Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.
3. Compressor Selection:
When selecting a gas air compressor for well drilling, several factors should be considered:
- Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
- Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
- Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.
4. Safety Considerations:
It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.
5. Other Considerations:
While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.
In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.
Can Gas Air Compressors Be Used for Sandblasting?
Yes, gas air compressors can be used for sandblasting. Sandblasting is a process that involves propelling abrasive materials, such as sand or grit, at high speeds to clean, etch, or prepare surfaces. Here’s a detailed explanation:
1. Compressed Air Requirement:
Sandblasting requires a reliable source of compressed air to propel the abrasive material. Gas air compressors, particularly those powered by gasoline or diesel engines, can provide the necessary compressed air for sandblasting operations. The compressors supply a continuous flow of compressed air at the required pressure to propel the abrasive material through the sandblasting equipment.
2. Portable and Versatile:
Gas air compressors are often portable and can be easily transported to different job sites, making them suitable for sandblasting applications in various locations. The portability of gas air compressors allows flexibility and convenience, especially when sandblasting needs to be performed on large structures, such as buildings, tanks, or bridges.
3. Pressure and Volume:
When selecting a gas air compressor for sandblasting, it is essential to consider the required pressure and volume of compressed air. Sandblasting typically requires higher pressures to effectively propel the abrasive material and achieve the desired surface treatment. Gas air compressors can provide higher pressure outputs compared to electric compressors, making them well-suited for sandblasting applications.
4. Compressor Size and Capacity:
The size and capacity of the gas air compressor should be chosen based on the specific requirements of the sandblasting project. Factors to consider include the size of the sandblasting equipment, the length of the air hose, and the desired duration of continuous operation. Selecting a gas air compressor with an appropriate tank size and airflow capacity ensures a consistent supply of compressed air during sandblasting.
5. Maintenance Considerations:
Regular maintenance is crucial for gas air compressors used in sandblasting applications. The abrasive nature of the sand or grit used in sandblasting can introduce particles into the compressor system, potentially causing wear or clogging. Regular inspection, cleaning, and maintenance of the compressor, including filters, valves, and hoses, help prevent damage and ensure optimal performance.
6. Safety Precautions:
When using gas air compressors for sandblasting, it is essential to follow appropriate safety precautions. Sandblasting generates airborne particles and dust, which can be hazardous if inhaled. Ensure proper ventilation, wear appropriate personal protective equipment (PPE), such as respiratory masks, goggles, and protective clothing, and follow recommended safety guidelines to protect the operator and others in the vicinity.
In summary, gas air compressors can be effectively used for sandblasting applications. They provide the necessary compressed air to propel abrasive materials, offer portability and versatility, and can deliver the required pressure and volume for efficient sandblasting operations. Proper compressor selection, maintenance, and adherence to safety precautions contribute to successful and safe sandblasting processes.
Are There Different Types of Gas Air Compressors Available?
Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:
1. Reciprocating Gas Air Compressors:
Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.
2. Rotary Screw Gas Air Compressors:
Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.
3. Rotary Vane Gas Air Compressors:
Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.
4. Centrifugal Gas Air Compressors:
Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.
5. Oil-Free Gas Air Compressors:
Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.
6. Portable Gas Air Compressors:
Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.
7. High-Pressure Gas Air Compressors:
High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.
8. Biogas Air Compressors:
Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.
These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.
editor by CX 2024-04-23
China wholesaler China Brand LPG CNG Liquefied Petroleum Hydrogen Biogas Gas Compressor Small Biogas Compressor Manufacturer air compressor lowes
Product Description
Reciprocating Oil-free Piston Compressor
( Blue Font To View Hyperlink)
Our company specialize in making various kinds of compressors, such as:Diaphragm compressor,Piston compressor, Air compressors,Nitrogen generator,Oxygen generator ,Gas cylinder,etc. All products can be customized according to your parameters and other requirements.
This series of oil-free compressor is one of the first products produced by our factory in China. The product has the characteristics of low speed, high component strength, stable operation, long service life and convenient maintenance. This series compressor is in the form of unit. It integrates compressor, gas-liquid separator, filter, 2 position four-way valve, safety valve, check valve, explosion-proof motor and chassis. The utility model has the advantages of small volume, light weight, low noise, good sealing performance, easy installation, simple operation, etc.
Main components
1. Motion system: crankshaft, piston connecting rod assembly, coupling, etc.
2. Air distribution system: valve plate, valve spring, etc.
3. Sealing system: piston ring, oil seal, gasket, packing, etc.
4. Body system: crankcase, cylinder block, cylinder liner, cover plate, etc.
5. Lubrication system: lubricating oil pump, oil filter, pressure regulating valve, etc.;
6. Safety and energy regulation systems: safety valves, energy regulation devices, etc.
Working principle of piston compressor
When the crankshaft of the piston compressor rotates, the piston will reciprocate through the transmission of the connecting rod, and the working volume formed by the inner wall of the cylinder, the cylinder head and the top surface of the piston will periodically change. When the piston of a piston compressor starts to move from the cylinder head, the working volume in the cylinder gradually increases. At this time, the gas flows along the intake pipe and pushes the intake valve to enter the cylinder until the working volume reaches the maximum. , The intake valve is closed; when the piston of the piston compressor moves in the reverse direction, the working volume in the cylinder is reduced, and the gas pressure is increased. When the pressure in the cylinder reaches and is slightly higher than the exhaust pressure, the exhaust valve opens and the gas is discharged from the cylinder , Until the piston moves to the limit position, the exhaust valve is closed. When the piston of the piston compressor moves in the reverse direction again, the above process repeats. In short, the crankshaft of a piston compressor rotates once, the piston reciprocates once, and the process of air intake, compression, and exhaust is realized in the cylinder, which completes a work cycle.
Advantages of piston compressor
1. The applicable pressure range of the piston compressor is wide, and the required pressure can be reached regardless of the flow rate;
2. The piston compressor has high thermal efficiency and low unit power consumption;
3. Strong adaptability, that is, a wide exhaust range, and is not affected by the pressure level, and can adapt to a wider pressure range and cooling capacity requirements;
4. Piston compressors have low requirements for materials, and use common steel materials, which is easier to process and lower in cost;
5. The piston compressor is relatively mature in technology, and has accumulated rich experience in production and use;
6. The device system of the piston compressor is relatively simple.
Note: In the unloading process, the compressor pressurizes the gas from the storage tank and then presses it into the tank car through the gas-phase pipeline, and presses the liquid from the tank car to the storage tank through the gas-phase differential pressure to complete the unloading process. When the gas phase is pressurized, the temperature of the gas phase will rise. At this time, forced cooling is not necessary, because if the gas phase is compressed and then cooled, it is easy to liquefy, and it is difficult to establish the pressure difference of the gas phase, which is not conducive to the replacement of the gas phase and the liquid phase. In short, it will cause the prolongation of the unloading process. If it is necessary to recover the residual gas, the cooler can be selected to forcibly cool the gas phase during the recovery operation, so as to recover the residual gas as soon as possible.The loading process is opposite to the unloading process.
Chemical Process Compressor Description
Chemical process compressors refer to process reciprocating piston compressors used to compress various single or mixed media gases in petroleum and chemical processes, as well as chemical exhaust gas recycling systems. Its main function is to transport the medium gas in the reaction device and provide the required pressure to the reaction device. Features 1. Designed for specific process flow. 2. The whole machine is skid-mounted and advanced in structure. 3. The compressor types are: Z type, D type, M type. 4. The middle body of the slideway and the cylinder can be designed in different structural forms according to the process requirements.
Customized is accepted , Pls provide the following information to us :
1.Flow rate: _______Nm3/h
2.Gas Media : ______ Hydrogen or Natural Gas or Oxygen or other gas ?
3.Inlet pressure: ___bar(g)
4.Inlet temperature:_____ºC
5.Outlet pressure:____bar(g)
6.Outlet temperature:____ºC
7.Installation location: _____indoor or outdoor?
8.Location ambient temperature: ____ºC
9.Power supply: _V/ _Hz/ _3Ph?
10.Cooling method for gas: air cooling or water cooing?
Wide variety and types of diaphragm compressor can be manufactured by our company such as hydrogen compressor , nitrogen compressor , helium compressor , natural gas compressor and etc .
Outlet pressure at 50bar 200 bar, 350 bar (5000 psi), 450 bar, 500 bar, 700 bar (10,000 psi), 900 bar (13,000 psi) and other pressure can be customized .
Reference Technical parameters and specifications
Model | Volume flow(Nm3/h) | Suction pressure(Mpa) | Exhaust pressure (Mpa) | Motor power(kw) | Dimension (mm) | |
1 | ZW-0.4/ 2-250 | 60 | 0.2 | 25 | 18.5 | 2800*2200*1600 |
2 | ZW-0.81/ (1~3)-25 | 120 | 0.1~0.3 | 2.5 | 22 | 1000*580*870 |
3 | DW-5.8/0.5-5 | 400~500 | 0.05 | 0.5 | 37 | 2000*1600*1200 |
4 | DW-10/2 | 510 | Atmospheric pressure | 0.2 | 37 | 2000*1600*1200 |
5 | DW-6.0/5 | 300 | Atmospheric pressure | 0.5 | 37 | 2000*1600*1200 |
6 | DW-0.21/(20~30)-250 | 270 | 2~3 | 25 | 45 | 3200*2200*1600 |
7 | ZW-0.16/60-250 | 480 | 6 | 25 | 45 | 3000*2200*1600 |
8 | ZW-0.46 /(5~10)-250 | 200 | 0.5~1.0 | 25 | 45 | 3000*2200*1600 |
9 | DW-1.34/2-250 | 208 | 0.2 | 25 | 55 | 3400*2200*1600 |
10 | DW-0.6/24-85 | 720 | 2.4 | 8.5 | 55 | 2200*1600*1200 |
11 | ZW-2.9/14.2-20 | 220 | 1.42 | 2 | 55 | 2200*1600*1200 |
12 | VW-2.0/(2~4)-25 | 410 | 0.2~0.4 | 2.5 | 55 | 3400*2200*1600 |
13 | DW-0.85/(3~4)-250 | 180 | 0.3~0.4 | 25 | 55 | 2400*1800*1500 |
14 | DW-25-(0.2~0.3)-1.5 | 1620 | 0.02~0.03 | 0.15 | 75 | 2400*1800*1500 |
15 | VW-8.0/0.3-25 | 540 | 0.03 | 2.5 | 90 | 2400*1800*1500 |
16 | DW-6.8/0.05-40 | 200~400 | 0.005 | 4 | 90 | 2400*1800*1500 |
Workshop of natural gas compressor
Our products
Our Certificate : CE and ISO certification
Our exhibition for the gas compressor
Our Certificate : CE and ISO certification
Our Service for diaphragm compressor :
1.Service time : 24*7 Hours
2.Customized Service
3.Perfect pre-sale,sale,after-sales service
4.FAT
5.Onsite commissioning Service
6.18 months warranty period
FAQ :
Q1.How about your after-sales service?
A: 1. Provide customers with intallation and commissioning online instructions.
2. Well-trained engineers available to overseas after-sales service.
Q2.What’s payment term?
A: T/T, L/C, D/P, Western Union, Trade Assurance and etc. Also we could accept USD, RMB, GBP, Euro and other currency.
Q3 : How long is your air compressor warranty?
A: Usually 1 year /12 Months for whole compressor machine, 2years/24months for air end (except maintenance spare parts.). And we can provide further warranty if necessary. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 18 Months |
---|---|
Warranty: | 18 Months |
Lubrication Style: | Oil-free |
Cooling System: | Air Cooling |
Cylinder Arrangement: | Balanced Opposed Arrangement |
Cylinder Position: | Vertical |
Customization: |
Available
|
|
---|
How Do You Troubleshoot Common Issues with Gas Air Compressors?
Troubleshooting common issues with gas air compressors involves identifying and addressing potential problems that may arise during operation. Here’s a detailed explanation of the troubleshooting process:
1. Start with Safety Precautions:
Prior to troubleshooting, ensure that the gas air compressor is turned off and disconnected from the power source. Follow proper safety procedures, such as wearing appropriate personal protective equipment (PPE), to avoid accidents or injuries.
2. Check Power Supply and Connections:
Verify that the compressor is receiving power and that all electrical connections are secure. Inspect the power cord, plug, and any switches or controls to ensure they are functioning properly. If the compressor is equipped with a battery, check its charge level and connections.
3. Check Fuel Supply:
For gas air compressors that use gasoline or propane, ensure that there is an adequate fuel supply. Check the fuel tank level and verify that the fuel shut-off valve is open. If the compressor has been sitting idle for an extended period, old or stale fuel may cause starting issues. Consider draining and replacing the fuel if necessary.
4. Inspect Air Filters:
Dirty or clogged air filters can restrict airflow and affect the compressor’s performance. Check the intake air filters and clean or replace them as needed. Clogged filters can be cleaned with compressed air or washed with mild detergent and water, depending on the type of filter.
5. Check Oil Level and Quality:
If the gas air compressor has an engine with an oil reservoir, verify the oil level using the dipstick or oil level indicator. Insufficient oil can lead to engine damage or poor performance. Additionally, check the oil quality to ensure it is clean and within the recommended viscosity range. If needed, change the oil following the manufacturer’s guidelines.
6. Inspect Spark Plug:
If the gas air compressor uses a spark plug ignition system, inspect the spark plug for signs of damage or fouling. Clean or replace the spark plug if necessary, following the manufacturer’s recommendations for gap setting and torque.
7. Check Belts and Pulleys:
Inspect the belts and pulleys that drive the compressor pump. Loose or worn belts can cause slippage and affect the compressor’s performance. Tighten or replace any damaged belts, and ensure that the pulleys are properly aligned.
8. Listen for Unusual Noises:
During operation, listen for any unusual or excessive noises, such as grinding, rattling, or squealing sounds. Unusual noises could indicate mechanical issues, loose components, or improper lubrication. If identified, consult the compressor’s manual or contact a qualified technician for further inspection and repair.
9. Consult the Owner’s Manual:
If troubleshooting steps do not resolve the issue, refer to the compressor’s owner’s manual for specific troubleshooting guidance. The manual may provide additional troubleshooting steps, diagnostic charts, or recommended maintenance procedures.
10. Seek Professional Assistance:
If the issue persists or if you are unsure about performing further troubleshooting steps, it is recommended to seek assistance from a qualified technician or contact the manufacturer’s customer support for guidance.
Remember to always prioritize safety and follow proper maintenance practices to prevent issues and ensure the reliable performance of the gas air compressor.
Can Gas Air Compressors Be Used for Sandblasting?
Yes, gas air compressors can be used for sandblasting. Sandblasting is a process that involves propelling abrasive materials, such as sand or grit, at high speeds to clean, etch, or prepare surfaces. Here’s a detailed explanation:
1. Compressed Air Requirement:
Sandblasting requires a reliable source of compressed air to propel the abrasive material. Gas air compressors, particularly those powered by gasoline or diesel engines, can provide the necessary compressed air for sandblasting operations. The compressors supply a continuous flow of compressed air at the required pressure to propel the abrasive material through the sandblasting equipment.
2. Portable and Versatile:
Gas air compressors are often portable and can be easily transported to different job sites, making them suitable for sandblasting applications in various locations. The portability of gas air compressors allows flexibility and convenience, especially when sandblasting needs to be performed on large structures, such as buildings, tanks, or bridges.
3. Pressure and Volume:
When selecting a gas air compressor for sandblasting, it is essential to consider the required pressure and volume of compressed air. Sandblasting typically requires higher pressures to effectively propel the abrasive material and achieve the desired surface treatment. Gas air compressors can provide higher pressure outputs compared to electric compressors, making them well-suited for sandblasting applications.
4. Compressor Size and Capacity:
The size and capacity of the gas air compressor should be chosen based on the specific requirements of the sandblasting project. Factors to consider include the size of the sandblasting equipment, the length of the air hose, and the desired duration of continuous operation. Selecting a gas air compressor with an appropriate tank size and airflow capacity ensures a consistent supply of compressed air during sandblasting.
5. Maintenance Considerations:
Regular maintenance is crucial for gas air compressors used in sandblasting applications. The abrasive nature of the sand or grit used in sandblasting can introduce particles into the compressor system, potentially causing wear or clogging. Regular inspection, cleaning, and maintenance of the compressor, including filters, valves, and hoses, help prevent damage and ensure optimal performance.
6. Safety Precautions:
When using gas air compressors for sandblasting, it is essential to follow appropriate safety precautions. Sandblasting generates airborne particles and dust, which can be hazardous if inhaled. Ensure proper ventilation, wear appropriate personal protective equipment (PPE), such as respiratory masks, goggles, and protective clothing, and follow recommended safety guidelines to protect the operator and others in the vicinity.
In summary, gas air compressors can be effectively used for sandblasting applications. They provide the necessary compressed air to propel abrasive materials, offer portability and versatility, and can deliver the required pressure and volume for efficient sandblasting operations. Proper compressor selection, maintenance, and adherence to safety precautions contribute to successful and safe sandblasting processes.
How Do You Choose the Right Size Gas Air Compressor for Your Needs?
Choosing the right size gas air compressor is crucial to ensure optimal performance and efficiency for your specific needs. Selecting a compressor that is too small may result in insufficient airflow or pressure, while choosing one that is too large can lead to unnecessary energy consumption and higher costs. Here’s a detailed explanation of the factors to consider when choosing the right size gas air compressor:
1. Required Airflow:
Determine the airflow requirements of your applications. Consider the tools, equipment, or processes that will be powered by the compressor and their respective airflow demands. The required airflow is typically measured in cubic feet per minute (CFM). Determine the total CFM required, taking into account any simultaneous or intermittent tool usage.
2. Operating Pressure:
Identify the operating pressure required for your applications. Different tools and systems have specific pressure requirements, measured in pounds per square inch (PSI). Ensure that the compressor you choose can deliver the required pressure consistently.
3. Duty Cycle:
Consider the duty cycle, which refers to the amount of time the compressor will be in operation within a given period. Some applications may require continuous operation, while others involve intermittent or occasional use. Take into account the duty cycle to ensure that the compressor can handle the expected workload without overheating or experiencing excessive wear.
4. Tank Size:
The tank size of a gas air compressor determines its ability to store compressed air and provide a steady supply. A larger tank can help accommodate fluctuations in demand and reduce the frequency of the compressor cycling on and off. Consider the required storage capacity based on the specific applications and the desired balance between continuous operation and storage capacity.
5. Power Source:
Gas air compressors can be powered by different fuels, such as gasoline, diesel, natural gas, or propane. Consider the availability and cost of the fuel options in your location, as well as the specific requirements of your applications. Choose a compressor that is compatible with a power source that suits your needs.
6. Portability:
Determine if portability is a requirement for your applications. If you need to move the compressor to different job sites or locations, consider a portable model with features like wheels, handles, or a compact design that facilitates easy transportation.
7. Noise Level:
If noise is a concern in your working environment, consider the noise level of the compressor. Gas air compressors can vary in their noise output, and certain models may have noise-reducing features or insulation to minimize sound emissions.
8. Manufacturer Recommendations:
Consult the manufacturer’s recommendations and guidelines for selecting the appropriate compressor size for your specific needs. Manufacturers often provide guidelines based on the anticipated applications, airflow requirements, and other factors to help you make an informed decision.
By considering these factors and carefully assessing your specific requirements, you can choose the right size gas air compressor that meets your airflow, pressure, duty cycle, and other operational needs. It’s advisable to consult with industry professionals or compressor experts for guidance, especially for complex or specialized applications.
editor by CX 2024-04-19
China supplier Gd-150/2-20 Best Price High Flow Helium Nitrogen Gas Oil-Free Diaphragm Compressor small air compressor
Product Description
Reciprocating Completely Oil-Free Diaphragm Compressor
( Blue Font To View Hyperlink)
Our company specialize in producing various kinds of compressor products, such as:Diaphragm compressor,Piston compressor, Air compressors,Nitrogen generator,Oxygen generator ,Gas cylinder,etc. All products can be customized according to your parameters and other requirements.
Process Principle
Diaphragm compressor according to the needs of the user, choose the right type of compressor to meet the needs of the user. The diaphragm of the metal diaphragm compressor completely separates the gas from the hydraulic oil system to ensure the purity of the gas and no pollution to the gas. At the same time, advanced manufacturing technology and accurate membrane cavity design technology are adopted to ensure the service life of the diaphragm compressor diaphragm. No pollution: the metal diaphragm group completely separates the process gas from the hydraulic oil and lubricating oil parts to ensure the gas purity.
Main Structure
Diaphragm compressor structure is mainly composed of motor, base, crankcase, crankshaft linkage mechanism, cylinder components, crankshaft connecting rod, piston, oil and gas pipeline, electric control system and some accessories.
Gas Media
Our compressors can compress ammonia, propylene, nitrogen, oxygen, helium, hydrogen, hydrogen chloride, argon, hydrogen chloride, hydrogen sulfide, hydrogen bromide, ethylene, acetylene, etc.(Nitrogen diaphragm compressor,bottle filling compressor,oxygen diaphragm compressor)
GD Model Instruction
GD diaphragm compressor is a special structure of the volumetric compressor, is the highest level of compression in the field of gas compression, this compression method Without secondary pollution, it can ensure the purity of gas is more than 5, and it has very good protection against compressed gas. It has the characteristics of large compression ratio, good sealing performance, and the compressed gas is not polluted by lubricating oil and other CHINAMFG impurities. Therefore, it is suitable for compressing high-purity, rare and precious, flammable, explosive, toxic, harmful, corrosive and high-pressure gases. The compression method is generally specified in the world for compressing high-purity gas, flammable and explosive gas, toxic gas and oxygen. Etc. (such as nitrogen diaphragm compressor, oxygen diaphragm compressor, hydrogen sulfide diaphragm compressor, argon diaphragm compressor, etc.).
GD diaphragm compressor for my company independent research and development of large diaphragm compressor, its advantages are: high compression ratio, large displacement, large piston force, stable running, high exhaust pressure, etc, has been widely used and petroleum chemical industry and nuclear power plant, and so on,.Two GD type diaphragm compressor cylinder arrangement for symmetrically arranged in parallel, more suitable for the petrochemical and nuclear power plant such as uninterrupted operation for a long time, because of the cylinder body symmetry, run up against other arrangement of diaphragm compressor is the most stable operation, running, small vibration from the ground clearance is more convenient in maintenance.
Advantages
1.Good sealing performance
Diaphragm compressor is a kind of special structure displacement compressor.The gas does not need lubrication,the sealing performance is good,the compression medium does not contact with any lubricant,and there will be no pollution in the compression process.It is especially suitable for high purity(99.9999%),rate,extremely corrosive,toxic and harmful,inflammable and explosive.Compression,transportation and bottle filling of radioactive gases.Membrane head is sealed with inlaid double O-ring,and its sealing effect is far better than that of open type.
2.Cylinder has good heat dissipation performance
The working cylinder of diaphragm compressor has good heat dissipation performance and is close to isothermal compression.It can adopt higher compression ratio and is suitable for compressing high-pressure gas.
3.Compressor speed is low and service life of vulnerable parts is prolonged.The new type of diaphragm cavity curve improve the volume efficiency of the compressor,optimize the value type,and adopt special heat treatment method for diaphragm,which greatly improves the service life of the compressor.
4.The high efficiency cooler is adopted,which makes the whole machine low in temperature and high in efficiency.The service life of lubricating oil,O-ring and value spring can be prolonged appropriately .Under the condition of meeting the buyer’s technological parameters,the structure is more advanced,reasonable and energy-saving.
5.The diaphragm rupture alarm structure is advanced,reasonable and reliable.The diaphragm installation has no directionality and is easy to replace.
6.The parts and components of the whole equipment are concentrated on a skid-mounted chassis,which is convenient for transportation,installation and management.
Reference Operating Parameter:
Model | GD-120/4-80 | Remarks | |
Volume Flow | Nm3/h | 120 | No-Standard |
Working pressure | Suction pressure: | 0.4MPa | No-Standard |
Exhaust pressure: | 8.0MPa | No-Standard | |
Cooling Method | Water-Cooled | No-Standard | |
Intake temperature | °C | 0~30 | |
Inlet pressure | MPa | 0.3~0.4 | |
Discharge temperature | °C | ≤45ºC | |
Noise | dB(A) | ≤80 | |
Power/Frequence | V/Hz | 380/50 | No-Standard |
Motor Power | Kw | 22KW~200KW | No-Standard |
Crankshaft speed | r/min | 420 | |
Overall dimension | L/mm | 3000 | |
W/mm | 1600 | ||
H/mm | 1400 |
Reference Specification
1 | GD-120/4-80 | 3.0 | 120 | 0.4 | 8.0 | 3000x1600x1400 | 30 | |
2 | GD-130/0.98-11 | 3.0 | 130 | 0.098 | 1.1 | 3000x1800x1600 | 4.0 | 30 |
3 | GD-150/2-20 | 3.0 | 150 | 0.2 | 2.0 | 3000x1800x1600 | 4.0 | 37 |
4 | GD-100/0.1-5 | 4.0 | 100 | 0.01 | 0.5 | 2800X1500X1500 | 3.0 | 18.5 |
5 | GD-100/5.5-200 | 5.0 | 100 | 0.55 | 20 | 3200X2000X1600 | 4.5 | 45 |
6 | GD-80/0.12-4 | 5.0 | 80 | 0.012 | 0.4 | 2800x1600x 1500 | 3.8 | 15 |
7 | GD-60/0.3-6 | 4.0 | 60 | 0.03 | 0.6 | 2800x1600x1500 | 4.0 | 15 |
8 | GD-70/0.1-8 | 3.8 | 70 | 0.01 | 0.8 | 3000 x 1600×1250 | 5.0 | 18.5 |
9 | GD-40/0.02-160 | 5.0 | 40 | 0.02 | 16 | 2800x1460x1530 | 3.0 | 22 |
10 | GD-100/0.5-6 | 2.0 | 100 | 0.05 | 0.6 | 3000x2000x1560 | 6.0 | 18.5 |
11 | GD-36/1-150 | 4.0 | 36 | 0.1 | 15 | 3000x1500x1500 | 4.0 | 45 |
12 | GD-35/0.7-300 | 4.0 | 35 | 0.07 | 30 | 3000x1600x1500 | 4.0 | 22 |
13 | GD-500/15-35 | 4.5 | 500 | 1.5 | 3.5 | 3000x2000x1700 | 4.0 | 45 |
14 | GD-150/15-210 | 4.5 | 150 | 1.5 | 21 | 3200x1700x1600 | 4.0 | 45 |
15 | GD-120/8-220 | 4.5 | 120 | 0.8 | 22 | 3200x1700x1600 | 3.8 | 45 |
16 | GD-100/9 | 4.5 | 100 | 0.0 | 0.9 | 3200x1700x1800 | 4.5 | 22 |
17 | GD-100/1.5-150 | 4.5 | 100 | 0.15 | 15 | 3200x1700x1800 | 4.5 | 45 |
18 | GD-40/30 | 4.5 | 40 | 0.0 | 3.0 | 3200x1700x1800 | 4.0 | 18.5 |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Principle: | Reciprocating Compressor |
---|---|
Application: | High Back Pressure Type |
Performance: | Low Noise, Variable Frequency, Explosion-Proof, Corrosion-Proof |
Mute: | Mute |
Lubrication Style: | Oil-free |
Drive Mode: | Electric |
Customization: |
Available
|
|
---|
What Is the Noise Level of Gas Air Compressors?
The noise level of gas air compressors can vary depending on several factors, including the compressor’s design, engine type, operating conditions, and the presence of noise-reducing features. Here’s a detailed explanation:
1. Compressor Design:
The design of the gas air compressor can influence its noise level. Some compressors are engineered with noise reduction in mind, utilizing features such as sound insulation, vibration dampening materials, and mufflers to minimize noise generation. Compressors with enclosed cabinets or acoustic enclosures tend to have lower noise levels compared to open-frame compressors.
2. Engine Type:
The type of engine used in the gas air compressor can impact the noise level. Gas air compressors typically use internal combustion engines powered by gasoline or propane. Gasoline engines tend to produce higher noise levels compared to diesel engines or electric motors. However, advancements in engine technology have led to quieter gasoline engines with improved noise control.
3. Operating Conditions:
The operating conditions of the gas air compressor can affect the noise level. Factors such as the load capacity, speed of operation, and ambient temperature can influence the amount of noise generated. Compressors operating at higher loads or speeds may produce more noise compared to those running at lower levels.
4. Noise-Reducing Features:
Some gas air compressors are equipped with noise-reducing features to minimize sound emissions. These may include built-in silencers, acoustic enclosures, or noise-absorbing materials. Such features help dampen the noise produced by the compressor and reduce its overall noise level.
5. Manufacturer Specifications:
Manufacturers often provide noise level specifications for their gas air compressors. These specifications typically indicate the sound pressure level (SPL) in decibels (dB) at a specific distance from the compressor. It is important to refer to these specifications to get an idea of the expected noise level of a particular compressor model.
6. Distance and Location:
The distance between the gas air compressor and the listener can impact the perceived noise level. As sound waves disperse, the noise level decreases with distance. Locating the compressor in an area that is isolated or distant from occupied spaces can help minimize the impact of noise on the surrounding environment.
It is important to note that gas air compressors, especially those used in industrial or heavy-duty applications, can generate substantial noise levels. Occupational health and safety regulations may require the use of hearing protection for individuals working in close proximity to loud compressors.
Overall, the noise level of gas air compressors can vary, and it is advisable to consult the manufacturer’s specifications and consider noise-reducing features when selecting a compressor. Proper maintenance, such as regular lubrication and inspection of components, can also help minimize noise levels and ensure optimal performance.
What Is the Impact of Altitude on Gas Air Compressor Performance?
Altitude can have a significant impact on the performance of gas air compressors. Here’s a detailed explanation:
1. Decreased Air Density:
As altitude increases, the air density decreases. This reduction in air density affects the performance of gas air compressors, primarily because compressors rely on the intake of ambient air to generate compressed air. With lower air density at higher altitudes, the compressor’s ability to draw in a sufficient volume of air is reduced.
2. Reduced Compressor Output:
The decrease in air density directly affects the compressor’s output. Gas air compressors may experience a decrease in their maximum airflow and pressure capabilities at higher altitudes. This reduction in output can impact the compressor’s efficiency and its ability to deliver the required compressed air for various applications.
3. Increased Compressor Workload:
At higher altitudes, gas air compressors need to work harder to maintain the desired level of compressed air output. The reduced air density means the compressor must compress a larger volume of air to achieve the same pressure as it would at lower altitudes. This increased workload can lead to higher energy consumption, increased wear and tear on the compressor components, and potentially decreased overall performance and lifespan.
4. Engine Power Loss:
If the gas air compressor is powered by an internal combustion engine (such as gasoline or diesel), altitude can also impact the engine’s performance. As the air density decreases, the engine may experience a power loss due to reduced oxygen availability for combustion. This can result in reduced engine horsepower and torque, affecting the compressor’s ability to generate compressed air.
5. Considerations for Proper Sizing:
When selecting a gas air compressor for use at higher altitudes, it is crucial to consider the specific altitude conditions and adjust the compressor’s size and capacity accordingly. Choosing a compressor with a higher airflow and pressure rating than required at sea level can help compensate for the reduced performance at higher altitudes.
6. Maintenance and Adjustments:
Regular maintenance and adjustments are necessary to optimize the performance of gas air compressors operating at higher altitudes. This includes monitoring and adjusting the compressor’s intake systems, fuel-to-air ratio, and ignition timing to account for the reduced air density and maintain proper combustion efficiency.
In summary, altitude has a notable impact on the performance of gas air compressors. The decrease in air density at higher altitudes leads to reduced compressor output, increased compressor workload, potential engine power loss, and considerations for proper sizing and maintenance. Understanding these effects is crucial for selecting and operating gas air compressors effectively in various altitude conditions.
Are There Different Types of Gas Air Compressors Available?
Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:
1. Reciprocating Gas Air Compressors:
Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.
2. Rotary Screw Gas Air Compressors:
Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.
3. Rotary Vane Gas Air Compressors:
Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.
4. Centrifugal Gas Air Compressors:
Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.
5. Oil-Free Gas Air Compressors:
Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.
6. Portable Gas Air Compressors:
Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.
7. High-Pressure Gas Air Compressors:
High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.
8. Biogas Air Compressors:
Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.
These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.
editor by CX 2024-04-09
China wholesaler Zw-1.5/1-12 Small Oil-Free Lubricated Nitrogen Piston Compressor Stable Quality Natural Gas Compressor air compressor oil
Product Description
HangZhou CHINAMFG Gas Equipment Co.,Ltd, exporting diaphragm compressor, piston compressor, oxygen generator, gas cylinder and nitrogen generators with good quality and low price.
Piston compressor is a kind of piston reciprocating motion to make gas pressurization and gas delivery compressor mainly consists of working chamber, transmission parts, body and auxiliary parts. The working chamber is directly used to compress the gas, the piston is driven by the piston rod in the cylinder for reciprocating motion, the volume of the working chamber on both sides of the piston changes in turn, the volume decreases on 1 side of the gas due to the pressure increase through the valve discharge, the volume increases on 1 side due to the reduction of air pressure through the valve to absorb the gas.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 18 Months |
---|---|
Warranty: | 18 Months |
Lubrication Style: | Lubricated |
Cooling System: | Air Cooling |
Cylinder Arrangement: | Balanced Opposed Arrangement |
Cylinder Position: | Angular |
Customization: |
Available
|
|
---|
Can Gas Air Compressors Be Used for Well Drilling?
Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:
1. Air Drilling Method:
Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.
2. Benefits of Gas Air Compressors:
Gas air compressors offer several advantages for well drilling:
- Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
- Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
- Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
- Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.
3. Compressor Selection:
When selecting a gas air compressor for well drilling, several factors should be considered:
- Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
- Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
- Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.
4. Safety Considerations:
It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.
5. Other Considerations:
While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.
In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.
What Is the Role of Air Receivers in Gas Air Compressor Systems?
Air receivers play a crucial role in gas air compressor systems by serving as storage tanks for compressed air. Here’s a detailed explanation:
1. Storage and Stabilization:
The primary function of an air receiver is to store compressed air generated by the gas air compressor. As the compressor produces compressed air, the air receiver collects and stores it. This storage capacity helps meet fluctuating demand in compressed air usage, providing a buffer between the compressor and the system’s air consumption.
By storing compressed air, the air receiver helps stabilize the supply to the system, reducing pressure fluctuations and ensuring a consistent and reliable flow of compressed air. This is particularly important in applications where the demand for compressed air may vary or experience peaks and valleys.
2. Pressure Regulation:
Another role of the air receiver is to assist in pressure regulation within the gas air compressor system. As compressed air enters the receiver, the pressure inside increases. When the pressure reaches a predetermined upper limit, typically set by a pressure switch or regulator, the compressor stops supplying air, and the excess air is stored in the receiver.
Conversely, when the pressure in the system drops below a certain lower limit, the pressure switch or regulator signals the compressor to start, replenishing the compressed air in the receiver and maintaining the desired pressure level. This cycling of the compressor based on pressure levels helps regulate and control the overall system pressure.
3. Condensate Separation:
During the compression process, moisture or condensate can form in the compressed air due to the cooling effect. The air receiver acts as a reservoir that allows the condensate to settle at the bottom, away from the outlet. The receiver often includes a drain valve at the bottom to facilitate the removal of accumulated condensate, preventing it from reaching downstream equipment and causing potential damage or performance issues.
4. Energy Efficiency:
Air receivers contribute to energy efficiency in gas air compressor systems. They help optimize the operation of the compressor by reducing the occurrence of short-cycling, which refers to frequent on-off cycling of the compressor due to rapid pressure changes. Short-cycling can cause excessive wear on the compressor and reduce its overall efficiency.
The presence of an air receiver allows the compressor to operate in longer and more efficient cycles. The compressor runs until the receiver reaches the upper pressure limit, ensuring a more stable and energy-efficient operation.
5. Air Quality Improvement:
Depending on the design, air receivers can also aid in improving air quality in the compressed air system. They provide a space for the compressed air to cool down, allowing moisture and some contaminants to condense and separate from the air. This can be further enhanced with the use of additional filtration and drying equipment installed downstream of the receiver.
In summary, air receivers play a vital role in gas air compressor systems by providing storage capacity, stabilizing compressed air supply, regulating system pressure, separating condensate, improving energy efficiency, and contributing to air quality control. They are an integral component in ensuring the reliable and efficient operation of compressed air systems across various industries and applications.
What Are the Primary Applications of Gas Air Compressors?
Gas air compressors have a wide range of applications across various industries and activities. These compressors, powered by gas engines, provide a portable and versatile source of compressed air. Here’s a detailed explanation of the primary applications of gas air compressors:
1. Construction Industry:
Gas air compressors are extensively used in the construction industry. They power a variety of pneumatic tools and equipment, such as jackhammers, nail guns, impact wrenches, and concrete breakers. The portable nature of gas air compressors makes them ideal for construction sites where electricity may not be readily available or practical to use.
2. Agriculture and Farming:
Gas air compressors find applications in the agricultural sector. They are used to operate air-powered machinery and tools, including pneumatic seeders, sprayers, and agricultural pumps. Gas air compressors provide the necessary power to carry out tasks such as crop seeding, irrigation, and pest control in agricultural settings.
3. Recreational Activities:
Gas air compressors are commonly utilized in recreational activities. They are used to inflate tires, sports balls, inflatable structures, and recreational equipment such as air mattresses, rafts, and inflatable toys. Gas air compressors provide a convenient and portable solution for inflating various recreational items in outdoor settings.
4. Mobile Service Operations:
Gas air compressors are employed in mobile service operations, such as mobile mechanics, tire service providers, and mobile equipment repair services. These compressors power air tools and equipment required for on-site repairs, maintenance, and servicing of vehicles, machinery, and equipment. The mobility of gas air compressors allows service providers to bring their tools and compressed air source directly to the location of the service requirement.
5. Remote Job Sites:
Gas air compressors are well-suited for remote job sites or locations without access to electricity. They are commonly used in industries such as mining, oil and gas exploration, and remote construction projects. Gas air compressors power pneumatic tools, machinery, and drilling equipment in these environments, providing a reliable source of compressed air for operational needs.
6. Emergency and Backup Power:
In emergency situations or during power outages, gas air compressors can serve as a backup power source. They can power essential equipment and systems that rely on compressed air, such as emergency lighting, communication devices, medical equipment, and backup generators. Gas air compressors provide a reliable alternative power solution when electrical power is unavailable or unreliable.
7. Sandblasting and Surface Preparation:
Gas air compressors are used in sandblasting and surface preparation applications. They provide the high-pressure air necessary for propelling abrasive media, such as sand or grit, to remove paint, rust, or other coatings from surfaces. Gas air compressors offer the power and portability required for sandblasting operations in various industries, including automotive, metal fabrication, and industrial maintenance.
8. Off-Road and Outdoor Equipment:
Gas air compressors are commonly integrated into off-road and outdoor equipment, such as off-road vehicles, utility trucks, and recreational vehicles. They power air-operated systems, including air suspension systems, air brakes, air lockers, and air horns. Gas air compressors provide the necessary compressed air for reliable and efficient operation of these systems in rugged and outdoor environments.
Overall, gas air compressors have diverse applications in construction, agriculture, recreational activities, mobile service operations, remote job sites, emergency power backup, sandblasting, and various off-road and outdoor equipment. Their portability, versatility, and reliable power supply make them indispensable tools in numerous industries and activities.
editor by CX 2024-04-04
China Custom Low Noise Industrial Optimized for Maximum Outpu Piston Natural Gas Compressor small air compressor
Product Description
Detailed Photos
Low Noise Industrial Optimized for Maximum Outpu Piston Natural Gas Compressor
Description&Advantages
Product Descriptions:
Mainly used for boosting and transporting natural gas into the pipeline network (natural gas extraction from pipelines, recovery and cHangZhou of combustible gases). It can also be used for stirring in the pharmaceutical and brewing industries, pressurized gas transportation in the chemical industry, blow molding for bottle production in the food industry, and dust removal from parts in machinery manufacturing
Advantages:
Our products, incorporating technology from Austria’s LMF and Germany’s CHINAMFG Demag companies, exhibit high reliability. Wearable parts like gas valves and piston rings use products from Austria’s Hoerbiger company, with a lifespan exceeding 8000 hours. The system supports soft starting, allowing frequent start and stop cycles for the compressor. It features a wide intake range for broad adaptability. The overall skid-mounted structure results in low noise and is easy to install in urban areas, leading to investment savings.
It is equipped with a CHINAMFG PLC control system for high automation, ABB soft start (or variable frequency), and features automatic shutdown with audible and visual alarms in case of faults
Product Parameters
Model | Flow m3/h |
Inlet Pressure (Mpa) |
Outlet Pressure (Mpa) | Weight(Kg) | Power(Kw) |
VW-6/16-24 | 360 | 1.6 | 2.4 | 2600 | 110 |
VW-6/(0-1.62)-(5-21) | 360 | 0-0.162 | 0.5-2.1 | 2350 | 75 |
WW-26.7/0.5-10 | 1602 | 0.05 | 1 | 4500 | 250 |
DW-2/0.2-16 | 120 | 0.02 | 1.6 | 1500 | 22 |
WW-3/8 | 180 | normal pressure | 0.8 | 1500 | 22 |
2VW-50/3.5 | 3000 | normal pressure | 0.35 | 6000 | 220 |
2VW-16.7/0.5-20 | 1002 | 0.05 | 2 | 6500 | 185 |
ZW-0.6/6-10 | 36 | 0.6 | 1 | 760 | 5.5 |
ZW-0.8/12 | 48 | normal pressure | 1.2 | 1200 | 7.5 |
DW-9.5/7 | 570 | normal pressure | 0.7 | 2600 | 55 |
VW-4.5/0.5-10 | 270 | 0.05 | 1 | 2100 | 37 |
2VW-25/25 | 1500 | normal pressure | 2.5 | 2100 | 250 |
2VW-50/3.5 | 3000 | normal pressure | 0.35 | 6000 | 220 |
DW-4.5/0.5-13 | 270 | 0.05 | 1.3 | 2500 | 18.5 |
ZW-0.46/(5-10)-(15-20) | 27.6 | 0.5-1.0 | 1.5-2.0 | 850 | 11 |
VW-5.6/(1.5-2)-25 | 336 | 0.15-0.2 | 2.5 | 2000 | 55 |
V-6.5/(1-3)-7 | 390 | 0.1-0.3 | 0.7 | 1900 | 37 |
WW-2.5/3-250 | 150 | 0.3 | 25 | 3500 | 110 |
Our Factory
Part of Customer Visit
Certifications & Testing
Related Product
FAQ
Q:Are you a factory?
A:Yes, we are indeed a factory. We specialize in manufacturing high-quality Air/Gas Compressors and are proud to be a primary source for these products.
Q:How long is your delivery time?
A:It varies depending on the specific situation. For our standard configuration compressors, the delivery time is around 30 days. For customized compressors, it usually takes about 30-45 days.
Q:What technical support do you offer?
A:We offer comprehensive technical support to our clients, including remote assistance for installation and commissioning processes. Additionally, we have a team of seasoned engineers ready to be deployed to international client locations for meticulous on-site debugging, installation, and post-installation services.
Q:What is your warranty period?
A:Our warranty policy is valid for a period of 18 months from the date of commissioning at the end customer’s site or 21 months from the date of receipt by the purchaser, whichever comes first. This comprehensive coverage is designed to ensure total customer satisfaction and the reliability of our products
Q:How do you package the compressors?
A:For smaller compressors, we utilize robust plywood boxes that conform to export specifications.
For the larger units, we strategically place them in freight containers, implementing secure fastening methods to safeguard against any potential damage during the shipping process.
Q:What are your payment terms?
A:Usually, the payment is made by T/T with a 30% down payment CHINAMFG confirmation of the Proforma Invoice (PI), and the balance is to be paid after inspection and before shipment. We accept both TT and L/C at sight.
Send message Get product Offer & Brochure!!!
↓↓↓
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Local Teams |
---|---|
Warranty: | 18 Months |
Lubrication Style: | Oil-free |
Cooling System: | Air Cooling/Water Cooling |
Cylinder Arrangement: | Balanced Opposed Arrangement |
Cylinder Position: | Customized |
Samples: |
US$ 40000/Set
1 Set(Min.Order) | |
---|
Customization: |
Available
|
|
---|
What Is the Fuel Efficiency of Gas Air Compressors?
The fuel efficiency of gas air compressors can vary depending on several factors, including the compressor’s design, engine size, load capacity, and usage patterns. Gas air compressors typically use internal combustion engines powered by gasoline or propane to generate the mechanical energy required for compressing air. Here’s a detailed explanation of the factors that can influence the fuel efficiency of gas air compressors:
1. Engine Design and Size:
The design and size of the engine in a gas air compressor can impact its fuel efficiency. Engines with advanced technologies such as fuel injection and electronic controls tend to offer better fuel efficiency compared to older carbureted engines. Additionally, larger engines may consume more fuel to produce the required power, resulting in lower fuel efficiency compared to smaller engines for the same workload.
2. Load Capacity and Usage Patterns:
The load capacity and usage patterns of the gas air compressor play a significant role in fuel efficiency. Compressors operating at or near their maximum load capacity for extended periods may consume more fuel compared to compressors operating at lower loads. Additionally, compressors used intermittently or for lighter tasks may have better fuel efficiency due to reduced demand on the engine.
3. Maintenance and Tuning:
Proper maintenance and tuning of the gas air compressor’s engine can improve fuel efficiency. Regular maintenance tasks such as oil changes, air filter cleaning/replacement, spark plug inspection, and tuning the engine to the manufacturer’s specifications can help ensure optimal engine performance and fuel efficiency.
4. Operating Conditions:
The operating conditions, including ambient temperature, altitude, and humidity, can affect the fuel efficiency of gas air compressors. Extreme temperatures or high altitudes may require the engine to work harder, resulting in increased fuel consumption. Additionally, operating in humid conditions can affect the combustion process and potentially impact fuel efficiency.
5. Fuel Type:
The type of fuel used in the gas air compressor can influence its fuel efficiency. Gasoline and propane are common fuel choices for gas air compressors. The energy content and combustion characteristics of each fuel can affect the amount of fuel consumed per unit of work done. It is important to consider the specific fuel requirements and recommendations of the compressor manufacturer for optimal fuel efficiency.
6. Operator Skills and Practices:
The skills and practices of the operator can also impact fuel efficiency. Proper operation techniques, such as avoiding excessive idling, maintaining consistent engine speeds, and minimizing unnecessary load cycles, can contribute to improved fuel efficiency.
It is important to note that specific fuel efficiency ratings for gas air compressors can vary widely depending on the aforementioned factors. Manufacturers may provide estimated fuel consumption rates or fuel efficiency data for their specific compressor models, which can serve as a reference point when comparing different models or making purchasing decisions.
Ultimately, to maximize fuel efficiency, it is recommended to select a gas air compressor that suits the intended application, perform regular maintenance, follow the manufacturer’s guidelines, and operate the compressor efficiently based on the workload and conditions.
What Is the Role of Air Receivers in Gas Air Compressor Systems?
Air receivers play a crucial role in gas air compressor systems by serving as storage tanks for compressed air. Here’s a detailed explanation:
1. Storage and Stabilization:
The primary function of an air receiver is to store compressed air generated by the gas air compressor. As the compressor produces compressed air, the air receiver collects and stores it. This storage capacity helps meet fluctuating demand in compressed air usage, providing a buffer between the compressor and the system’s air consumption.
By storing compressed air, the air receiver helps stabilize the supply to the system, reducing pressure fluctuations and ensuring a consistent and reliable flow of compressed air. This is particularly important in applications where the demand for compressed air may vary or experience peaks and valleys.
2. Pressure Regulation:
Another role of the air receiver is to assist in pressure regulation within the gas air compressor system. As compressed air enters the receiver, the pressure inside increases. When the pressure reaches a predetermined upper limit, typically set by a pressure switch or regulator, the compressor stops supplying air, and the excess air is stored in the receiver.
Conversely, when the pressure in the system drops below a certain lower limit, the pressure switch or regulator signals the compressor to start, replenishing the compressed air in the receiver and maintaining the desired pressure level. This cycling of the compressor based on pressure levels helps regulate and control the overall system pressure.
3. Condensate Separation:
During the compression process, moisture or condensate can form in the compressed air due to the cooling effect. The air receiver acts as a reservoir that allows the condensate to settle at the bottom, away from the outlet. The receiver often includes a drain valve at the bottom to facilitate the removal of accumulated condensate, preventing it from reaching downstream equipment and causing potential damage or performance issues.
4. Energy Efficiency:
Air receivers contribute to energy efficiency in gas air compressor systems. They help optimize the operation of the compressor by reducing the occurrence of short-cycling, which refers to frequent on-off cycling of the compressor due to rapid pressure changes. Short-cycling can cause excessive wear on the compressor and reduce its overall efficiency.
The presence of an air receiver allows the compressor to operate in longer and more efficient cycles. The compressor runs until the receiver reaches the upper pressure limit, ensuring a more stable and energy-efficient operation.
5. Air Quality Improvement:
Depending on the design, air receivers can also aid in improving air quality in the compressed air system. They provide a space for the compressed air to cool down, allowing moisture and some contaminants to condense and separate from the air. This can be further enhanced with the use of additional filtration and drying equipment installed downstream of the receiver.
In summary, air receivers play a vital role in gas air compressor systems by providing storage capacity, stabilizing compressed air supply, regulating system pressure, separating condensate, improving energy efficiency, and contributing to air quality control. They are an integral component in ensuring the reliable and efficient operation of compressed air systems across various industries and applications.
What Are the Advantages of Using a Gas Air Compressor Over an Electric One?
Using a gas air compressor offers several advantages over an electric air compressor. Gas-powered compressors provide unique benefits in terms of mobility, versatility, power, and convenience. Here’s a detailed explanation of the advantages of using a gas air compressor:
1. Portability and Mobility:
Gas air compressors are typically more portable and mobile compared to electric compressors. They often feature handles, wheels, or trailers, allowing for easy transportation to different locations. This portability is especially advantageous in situations where compressed air is needed at remote job sites, outdoor events, or areas without access to electricity. Gas air compressors can be easily moved and positioned where they are required.
2. Independence from Electricity:
One of the primary advantages of gas air compressors is their independence from electricity. They are powered by gas engines, which means they do not rely on a direct connection to the electrical grid. This makes them suitable for use in areas where electrical power is limited, unreliable, or unavailable. Gas air compressors offer a reliable source of compressed air even in remote locations or during power outages.
3. Versatility in Fuel Options:
Gas air compressors provide versatility in terms of fuel options. They can be powered by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This flexibility allows users to choose the most readily available or cost-effective fuel source based on their specific requirements. It also makes gas compressors adaptable to different environments and fuel availability in various regions.
4. Higher Power Output:
Gas air compressors typically offer higher power output compared to electric compressors. Gas engines can generate more horsepower, allowing gas compressors to deliver greater air pressure and volume. This higher power output is beneficial when operating pneumatic tools or equipment that require a significant amount of compressed air, such as jackhammers, sandblasters, or heavy-duty impact wrenches.
5. Continuous Operation:
Gas air compressors can provide continuous operation without the need for frequent breaks or cooldown periods. Electric compressors may overheat with prolonged use, requiring intermittent rest periods to cool down. Gas compressors, on the other hand, can operate continuously for longer durations without the risk of overheating. This continuous operation capability is particularly advantageous in demanding applications or situations that require extended periods of compressed air usage.
6. Quick Startup and Response:
Gas air compressors offer quick startup and response times. They can be started instantly by simply pulling a cord or pressing a button, whereas electric compressors may require time to power up and reach optimal operating conditions. Gas compressors provide immediate access to compressed air, allowing for efficient and prompt task completion.
7. Durability and Resistance to Voltage Fluctuations:
Gas air compressors are generally more durable and resistant to voltage fluctuations compared to electric compressors. Electric compressors can be affected by voltage drops or surges, which may impact their performance or cause damage. Gas compressors, however, are less susceptible to voltage-related issues, making them reliable in environments where voltage fluctuations are common.
8. Lower Energy Costs:
Gas air compressors can offer lower energy costs compared to electric compressors, depending on the price of the fuel being used. Gasoline or diesel fuel, for example, may be more cost-effective than electricity in certain regions or applications. This cost advantage can result in significant savings over time, especially for high-demand compressed air operations.
Overall, the advantages of using a gas air compressor over an electric one include portability, independence from electricity, fuel versatility, higher power output, continuous operation capability, quick startup and response times, durability, resistance to voltage fluctuations, and potentially lower energy costs. These advantages make gas air compressors a preferred choice in various industries, remote locations, and applications where mobility, power, and reliability are crucial.
editor by CX 2024-03-28
China OEM 2090 200L Belt Air Compressor small air compressor
Product Description
Powerful pump with big tank
Metal handle and big wheels for easier transportation
Double universal quick coupler with double pressure gauges
Coveninet for customer to operate
Thermal Overload Protector
120 CHINAMFG Maximum Pressure
One year Limited Warranty
Comes complete with Air Filter
Traditional Compressor with Oil lubrication, high power and big air displacement.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Technical Support/ Supply Spare Parts |
---|---|
Warranty: | One Year |
Lubrication Style: | Lubricated |
Cooling System: | Air Cooling |
Cylinder Arrangement: | V Style |
Cylinder Position: | Vertical |
Samples: |
US$ 302/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How Do Gas Air Compressors Compare to Diesel Air Compressors?
When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:
1. Fuel Efficiency:
Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.
2. Power Output:
Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.
3. Cost:
In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.
4. Maintenance Requirements:
Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.
5. Environmental Impact:
When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.
6. Portability and Mobility:
Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.
It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.
In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.
Can Gas Air Compressors Be Used for Pneumatic Tools?
Yes, gas air compressors can be used for pneumatic tools. Here’s a detailed explanation:
1. Versatile Power Source:
Gas air compressors, powered by gasoline or diesel engines, provide a portable and versatile power source for operating pneumatic tools. They eliminate the need for electrical power supply, making them suitable for remote locations or construction sites where electricity may not be readily available.
2. High Power Output:
Gas air compressors typically offer higher power output compared to electric compressors of similar size. This high power output enables gas compressors to deliver the necessary air pressure and volume required by pneumatic tools, ensuring optimal tool performance.
3. Mobility and Portability:
Gas air compressors are often designed with mobility and portability in mind. They are compact and equipped with wheels or handles, allowing for easy transportation to different job sites. This mobility is advantageous when using pneumatic tools in various locations or when working in confined spaces.
4. Continuous Operation:
Gas air compressors can provide continuous air supply for pneumatic tools without the need for frequent pauses or recharging. As long as there is an adequate fuel supply, gas compressors can operate for extended periods, allowing uninterrupted use of pneumatic tools for tasks such as drilling, nailing, sanding, or painting.
5. Suitable for High-Demand Applications:
Pneumatic tools used in heavy-duty applications often require a robust air supply to meet their performance requirements. Gas air compressors can generate higher air flow rates and maintain higher operating pressures, making them suitable for high-demand pneumatic tools like jackhammers, impact wrenches, or sandblasters.
6. Flexibility in Compressor Size:
Gas air compressors are available in various sizes and capacities, allowing users to choose the compressor that best matches the air demands of their pneumatic tools. From small portable compressors for light-duty tasks to larger industrial-grade compressors for heavy-duty applications, there is a wide range of options to suit different tool requirements.
7. Reduced Dependency on Electrical Infrastructure:
Using gas air compressors for pneumatic tools reduces reliance on electrical infrastructure. In situations where the electrical power supply is limited, unreliable, or expensive, gas compressors offer a viable alternative, ensuring consistent tool performance without concerns about power availability.
It’s important to note that gas air compressors emit exhaust gases during operation, so proper ventilation is necessary when using them in enclosed spaces to ensure the safety of workers.
In summary, gas air compressors can effectively power pneumatic tools, offering mobility, high power output, continuous operation, and suitability for various applications. They provide a reliable and portable solution for utilizing pneumatic tools in locations where electrical power supply may be limited or unavailable.
What Fuels Are Commonly Used in Gas Air Compressors?
Gas air compressors can be powered by various fuels depending on the specific model and design. The choice of fuel depends on factors such as availability, cost, convenience, and environmental considerations. Here’s a detailed explanation of the fuels commonly used in gas air compressors:
1. Gasoline:
Gasoline is a widely used fuel in gas air compressors, particularly in portable models. Gasoline-powered compressors are popular due to the widespread availability of gasoline and the convenience of refueling. Gasoline engines are generally easy to start, and gasoline is relatively affordable in many regions. However, gasoline-powered compressors may emit more exhaust emissions compared to some other fuel options.
2. Diesel:
Diesel fuel is another common choice for gas air compressors, especially in larger industrial models. Diesel engines are known for their efficiency and durability, making them suitable for heavy-duty applications. Diesel fuel is often more cost-effective than gasoline, and diesel-powered compressors typically offer better fuel efficiency and longer runtime. Diesel compressors are commonly used in construction sites, mining operations, and other industrial settings.
3. Natural Gas:
Natural gas is a clean-burning fuel option for gas air compressors. It is a popular choice in areas where natural gas infrastructure is readily available. Natural gas compressors are often used in natural gas processing plants, pipeline operations, and other applications where natural gas is abundant. Natural gas-powered compressors offer lower emissions compared to gasoline or diesel, making them environmentally friendly.
4. Propane:
Propane, also known as liquefied petroleum gas (LPG), is commonly used as a fuel in gas air compressors. Propane-powered compressors are popular in construction, agriculture, and other industries where propane is used for various applications. Propane is stored in portable tanks, making it convenient for use in portable compressors. Propane-powered compressors are known for their clean combustion, low emissions, and easy availability.
5. Biogas:
In specific applications, gas air compressors can be fueled by biogas, which is produced from the decomposition of organic matter such as agricultural waste, food waste, or wastewater. Biogas compressors are used in biogas production facilities, landfills, and other settings where biogas is generated and utilized as a renewable energy source. The use of biogas as a fuel in compressors contributes to sustainability and reduces dependence on fossil fuels.
It’s important to note that the availability and suitability of these fuel options may vary depending on the region, infrastructure, and specific application requirements. When selecting a gas air compressor, it’s crucial to consider the compatibility of the compressor with the available fuel sources and to follow the manufacturer’s guidelines regarding fuel selection, storage, and safety precautions.
editor by CX 2024-03-07
China factory Small Refrigeration Compressed Air Dryer to Match Air Compressor wholesaler
Product Description
1.Company overview
ZHangZhoug YuHangZhou Air Separation Equipment Co., LTD. has a range of PSA nitrogen & oxygen generators, membrane nitrogen & oxygen generators, nitrogen purification systems , refrigerated air dryer, adsorption air dryer, air filter, air separator, air cooler etc, and are widely used in industries of petroleum, oil & gas, chemicals, electronics, metallurgy, coals, pharmaceuticals, aerospace, autos, glass, plastics, food, medical treatment, grain, etc. With years research in air separation technology and rich solution experiences in various industries, YDGET sticks to providing our clients with more reliable, more economical, more convenient professional gas solutions.
We have an experienced professional team always ready to be at your service. The sales engineers carefully analyze your specified requirements and offer suitable solutions for you. The after-sale service system guarantees swift response to your problems within 24 hours and their resolutions in the shortest time. YDGET is responsible for after-sales services to nitrogen/oxygen generators and other related equipment offered by us.
YDGET is dedicated to supplying with our customers with more reliable, more economical and more convenient air separation solutions and professional service.
2. Why choose YDGET ?
YDGET are dedicate engaged in manufacturing, supplying and expert an exclusive range of PSA nitrogen & oxygen generators, membrane nitrogen & oxygen generators, nitrogen purification systems , refrigerated air dryer, adsorption air dryer, air filter, air separator, air cooler etc that are fully automatic and requires low generation cost. These plants are highly required in glass industries, blazing industries and steel industries. We are offering patrons reliable and easy to install plants that are highly efficient in performances. These plants pass through various quality check process ensuring best outcome at customer’s end. Customer can avail these qualitative plants from as per their needs and requirements.
High oxygen/ nitrogen purity
PSA nitrogen generator plants allow production of high-purity nitrogen from air, which membrane systems are unable to provide – up to 99.9995% nitrogen. This nitrogen purity may also be ensured by cryogenic systems, but they are considerably more complex and justified only by large consumption volumes. The nitrogen generators use CMS (carbon molecular sieve) technology to produce a continuous supply of ultra high purity nitrogen and are available with internal compressors or without.
Low operating costs
By substitution of out-of-date air separation plants nitrogen production savings largely exceed 50%.[citation needed]
The net cost of nitrogen produced by nitrogen generators is significantly less than the cost of bottled or liquefied nitrogen.
Nitrogen/oxygen Generators Create Less Impact on the Environment
Generating nitrogen gas is a sustainable, environmentally friendly and energy efficient approach to providing pure, clean, dry nitrogen gas. Compared to the energy needed for a cryogenic air separation plant and the energy needed to transport the liquid nitrogen from the plant to the facility, generated nitrogen consumes less energy and creates far fewer greenhouse gases.
3.YuHangZhou KAD Refrigerated Compressed Air Dryer
3.1 Working Principle
Refrigerated dryers remove moisture from compressed air to a certain dew point temperature. The temperature to which air can be cooled before water vapor begins to condense. A separator used to separate gas and liquid, and then water discharged by automatic drain valve to achieve the purpose of frozen dehumidifier. Meanwhile, over 3μ dust CHINAMFG ingredients and micro-oil content in the compressed air are filtered out to ensure the quality clean, dry air.
3.2 Technical Features
Fax:
Contact: Jane Qian
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Usage: | Nitrogen, Oxygen, Compressed Air |
---|---|
Purpose: | Gas Purification |
Parts: | Filters |
Application Fields: | New Energy |
Noise Level: | Low |
Machine Size: | Medium |
Customization: |
Available
|
|
---|
How Do Gas Air Compressors Compare to Diesel Air Compressors?
When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:
1. Fuel Efficiency:
Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.
2. Power Output:
Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.
3. Cost:
In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.
4. Maintenance Requirements:
Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.
5. Environmental Impact:
When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.
6. Portability and Mobility:
Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.
It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.
In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.
What Are the Key Components of a Gas Air Compressor Control Panel?
A gas air compressor control panel typically consists of several key components. Here’s a detailed explanation:
1. Power Switch:
The power switch allows the operator to turn the compressor on or off. It is usually a toggle switch or a push-button switch located on the control panel.
2. Pressure Gauges:
Pressure gauges display the compressed air pressure at different stages of the compression process. Commonly, there are two pressure gauges: one to measure the incoming air pressure (suction pressure) and another to measure the outgoing compressed air pressure (discharge pressure).
3. Control Knobs or Buttons:
Control knobs or buttons are used to adjust and set various parameters of the compressor operation. These controls may include pressure settings, on/off timers, automatic start/stop functions, and other operational parameters specific to the compressor model.
4. Emergency Stop Button:
An emergency stop button is a critical safety feature that immediately shuts down the compressor in case of an emergency. Pressing the emergency stop button cuts off power to the compressor and stops its operation.
5. Motor Start/Stop Buttons:
Motor start and stop buttons allow the operator to manually start or stop the compressor motor. These buttons are used when manual control of the motor is required, such as during maintenance or troubleshooting.
6. Control Indicators:
Control indicators include various lights or LEDs that provide visual feedback about the compressor’s status and operation. These indicators may include power indicators, motor running indicators, pressure indicators, and fault indicators to signal any malfunctions or abnormal conditions.
7. Control Panel Display:
Some gas air compressors feature a control panel display that provides real-time information and feedback on the compressor’s performance. The display may show parameters such as operating pressure, temperature, maintenance alerts, fault codes, and other relevant information.
8. Start/Stop Control Circuit:
The start/stop control circuit is responsible for initiating and controlling the motor start and stop sequences. It typically includes relays, contactors, and other electrical components that enable the control panel to safely start and stop the compressor motor.
9. Safety and Protection Devices:
Gas air compressor control panels may incorporate safety and protection devices to safeguard the compressor and prevent potential damage or hazardous situations. These devices can include overload relays, thermal protection, pressure relief valves, and other safety features.
10. Control Panel Enclosure:
The control panel enclosure houses and protects the electrical components and wiring of the control panel. It provides insulation, protection from dust and moisture, and ensures the safety of the operator.
In summary, a gas air compressor control panel typically includes a power switch, pressure gauges, control knobs or buttons, emergency stop button, motor start/stop buttons, control indicators, control panel display (if applicable), start/stop control circuit, safety and protection devices, and a control panel enclosure. These components work together to monitor and control the compressor’s operation, ensure safety, and provide essential information to the operator.
Can Gas Air Compressors Be Used in Remote Locations?
Yes, gas air compressors are well-suited for use in remote locations where access to electricity may be limited or unavailable. Their portability and reliance on gas engines make them an ideal choice for providing a reliable source of compressed air in such environments. Here’s a detailed explanation of how gas air compressors can be used in remote locations:
1. Independence from Electrical Grid:
Gas air compressors do not require a direct connection to the electrical grid, unlike electric air compressors. This independence from the electrical grid allows gas air compressors to be used in remote locations, such as wilderness areas, remote job sites, or off-grid locations, where it may be impractical or cost-prohibitive to establish electrical infrastructure.
2. Mobility and Portability:
Gas air compressors are designed to be portable and easy to transport. They are often equipped with handles, wheels, or trailers, making them suitable for remote locations. The gas engine powering the compressor provides mobility, allowing the compressor to be moved to different areas within the remote location as needed.
3. Fuel Versatility:
Gas air compressors can be fueled by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This fuel versatility ensures that gas air compressors can adapt to the available fuel sources in remote locations. For example, if gasoline or diesel is readily available, the gas air compressor can be fueled with these fuels. Similarly, if natural gas or propane is accessible, the compressor can be configured to run on these gases.
4. On-Site Power Generation:
In remote locations where electricity is limited, gas air compressors can serve as on-site power generators. They can power not only the compressor itself but also other equipment or tools that require electricity for operation. This versatility makes gas air compressors useful for a wide range of applications in remote locations, such as powering lights, tools, communication devices, or small appliances.
5. Off-Grid Operations:
Gas air compressors enable off-grid operations, allowing tasks and activities to be carried out in remote locations without relying on external power sources. This is particularly valuable in industries such as mining, oil and gas exploration, forestry, or construction, where operations may take place in remote and isolated areas. Gas air compressors provide the necessary compressed air for pneumatic tools, drilling equipment, and other machinery required for these operations.
6. Emergency Preparedness:
Gas air compressors are also beneficial for emergency preparedness in remote locations. In situations where natural disasters or emergencies disrupt the power supply, gas air compressors can provide a reliable source of compressed air for essential equipment and systems. They can power emergency lighting, communication devices, medical equipment, or backup generators, ensuring operational continuity in critical situations.
7. Adaptability to Challenging Environments:
Gas air compressors are designed to withstand various environmental conditions, including extreme temperatures, humidity, dust, and vibrations. This adaptability to challenging environments makes them suitable for use in remote locations, where environmental conditions may be harsh or unpredictable.
Overall, gas air compressors can be effectively used in remote locations due to their independence from the electrical grid, mobility, fuel versatility, on-site power generation capabilities, suitability for off-grid operations, emergency preparedness, and adaptability to challenging environments. These compressors provide a reliable source of compressed air, enabling a wide range of applications in remote settings.
editor by CX 2024-03-06
China Standard Small Fridge Compressor Sc18g Lbp Hbp Gas R134A Voltage 220 to 240V air compressor repair near me
Product Description
Secop refrigerator 1/2HP compressor SC18G with 220-240V/50HZ R134a
Features:
piston compressors
1.high efficiency
2.good reliability
3.low noise.low vibration
4.original and new
Technical Datas:
Model | Electric Source | Power(HP) | Capacity(W) | Refrigerant | Back Pressure |
SC10C | 220V-240V 50Hz | 1/3HP | 250 | R22 | Low |
SC12C | 220V-240V 50Hz | 3/8HP | 281 | R22 | Low |
SC15CM | 220V-240V 50Hz | 1/2HP | 375 | R22 | Low |
SC18CM | 220V-240V 50Hz | 5/8HP | 469 | R22 | Low |
SC10D | 220V-240V 50Hz | 3/8HP | 281 | R22 | High |
SC12D | 220V-240V 50Hz | 1/2HP | 375 | R22 | High |
SC15D | 220V-240V 50Hz | 5/8HP | 469 | R22 | High |
SC10G | 220V-240V 50Hz | 5/16HP | 234 | R134a | Low/High |
SC12G | 220V-240V 50Hz | 1/3HP | 250 | R134a | Low/High |
SC15G | 220V-240V 50Hz | 3/8HP | 281 | R134a | Low/High |
SC18G | 220V-240V 50Hz | 1/2HP | 375 | R134a | Low/High |
SC21G | 220V-240V 50Hz | 5/8HP | 469 | R134a | Low/High |
SC10CL | 220V-240V 50Hz | 1/3HP | 250 | R404A | Low |
SC12CL | 220V-240V 50Hz | 3/8HP | 281 | R404A | Low |
SC15CL | 220V-240V 50Hz | 1/2HP | 375 | R404A | Low |
SC18CL | 220V-240V 50Hz | 5/8HP | 469 | R404A | Low |
SC21CL | 220V-240V 50Hz | 7/8HP | 656 | R404A | Low |
SC15GH | 220V-240V 50Hz | 3/8HP | 281 | R134A | Low |
SC10GH | 220V-240V 50Hz | 1/3HP | 250 | R134a | Low |
SC10MLAX | 220V-240V 50Hz | R404a | Middle | ||
SC12MLAX | 220V-240V 50Hz | R404a | Middle | ||
SC15MLAX | 220V-240V 50Hz | R404a | Middle | ||
SC18MLAX | 220V-240V 50Hz | R404a | Middle | ||
TL3G | 220V-240V 50Hz | R134A | Low/High | ||
TL4G | 220V-240V 50Hz | R134A | Low/High | ||
TL5G | 220V-240V 50Hz | R134A | Low/High | ||
TL4CL | 220V-240V 50Hz | R404a | Low | ||
FR6G | 220V-240V 50Hz | R134A | Low/High |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Lubrication Style: | Lubricated |
---|---|
Cooling System: | Air Cooling |
Cylinder Arrangement: | Balanced Opposed Arrangement |
Cylinder Position: | Angular |
Structure Type: | Closed Type |
Compress Level: | Single-Stage |
Customization: |
Available
|
|
---|
How Do You Troubleshoot Common Issues with Gas Air Compressors?
Troubleshooting common issues with gas air compressors involves identifying and addressing potential problems that may arise during operation. Here’s a detailed explanation of the troubleshooting process:
1. Start with Safety Precautions:
Prior to troubleshooting, ensure that the gas air compressor is turned off and disconnected from the power source. Follow proper safety procedures, such as wearing appropriate personal protective equipment (PPE), to avoid accidents or injuries.
2. Check Power Supply and Connections:
Verify that the compressor is receiving power and that all electrical connections are secure. Inspect the power cord, plug, and any switches or controls to ensure they are functioning properly. If the compressor is equipped with a battery, check its charge level and connections.
3. Check Fuel Supply:
For gas air compressors that use gasoline or propane, ensure that there is an adequate fuel supply. Check the fuel tank level and verify that the fuel shut-off valve is open. If the compressor has been sitting idle for an extended period, old or stale fuel may cause starting issues. Consider draining and replacing the fuel if necessary.
4. Inspect Air Filters:
Dirty or clogged air filters can restrict airflow and affect the compressor’s performance. Check the intake air filters and clean or replace them as needed. Clogged filters can be cleaned with compressed air or washed with mild detergent and water, depending on the type of filter.
5. Check Oil Level and Quality:
If the gas air compressor has an engine with an oil reservoir, verify the oil level using the dipstick or oil level indicator. Insufficient oil can lead to engine damage or poor performance. Additionally, check the oil quality to ensure it is clean and within the recommended viscosity range. If needed, change the oil following the manufacturer’s guidelines.
6. Inspect Spark Plug:
If the gas air compressor uses a spark plug ignition system, inspect the spark plug for signs of damage or fouling. Clean or replace the spark plug if necessary, following the manufacturer’s recommendations for gap setting and torque.
7. Check Belts and Pulleys:
Inspect the belts and pulleys that drive the compressor pump. Loose or worn belts can cause slippage and affect the compressor’s performance. Tighten or replace any damaged belts, and ensure that the pulleys are properly aligned.
8. Listen for Unusual Noises:
During operation, listen for any unusual or excessive noises, such as grinding, rattling, or squealing sounds. Unusual noises could indicate mechanical issues, loose components, or improper lubrication. If identified, consult the compressor’s manual or contact a qualified technician for further inspection and repair.
9. Consult the Owner’s Manual:
If troubleshooting steps do not resolve the issue, refer to the compressor’s owner’s manual for specific troubleshooting guidance. The manual may provide additional troubleshooting steps, diagnostic charts, or recommended maintenance procedures.
10. Seek Professional Assistance:
If the issue persists or if you are unsure about performing further troubleshooting steps, it is recommended to seek assistance from a qualified technician or contact the manufacturer’s customer support for guidance.
Remember to always prioritize safety and follow proper maintenance practices to prevent issues and ensure the reliable performance of the gas air compressor.
What Is the Impact of Altitude on Gas Air Compressor Performance?
Altitude can have a significant impact on the performance of gas air compressors. Here’s a detailed explanation:
1. Decreased Air Density:
As altitude increases, the air density decreases. This reduction in air density affects the performance of gas air compressors, primarily because compressors rely on the intake of ambient air to generate compressed air. With lower air density at higher altitudes, the compressor’s ability to draw in a sufficient volume of air is reduced.
2. Reduced Compressor Output:
The decrease in air density directly affects the compressor’s output. Gas air compressors may experience a decrease in their maximum airflow and pressure capabilities at higher altitudes. This reduction in output can impact the compressor’s efficiency and its ability to deliver the required compressed air for various applications.
3. Increased Compressor Workload:
At higher altitudes, gas air compressors need to work harder to maintain the desired level of compressed air output. The reduced air density means the compressor must compress a larger volume of air to achieve the same pressure as it would at lower altitudes. This increased workload can lead to higher energy consumption, increased wear and tear on the compressor components, and potentially decreased overall performance and lifespan.
4. Engine Power Loss:
If the gas air compressor is powered by an internal combustion engine (such as gasoline or diesel), altitude can also impact the engine’s performance. As the air density decreases, the engine may experience a power loss due to reduced oxygen availability for combustion. This can result in reduced engine horsepower and torque, affecting the compressor’s ability to generate compressed air.
5. Considerations for Proper Sizing:
When selecting a gas air compressor for use at higher altitudes, it is crucial to consider the specific altitude conditions and adjust the compressor’s size and capacity accordingly. Choosing a compressor with a higher airflow and pressure rating than required at sea level can help compensate for the reduced performance at higher altitudes.
6. Maintenance and Adjustments:
Regular maintenance and adjustments are necessary to optimize the performance of gas air compressors operating at higher altitudes. This includes monitoring and adjusting the compressor’s intake systems, fuel-to-air ratio, and ignition timing to account for the reduced air density and maintain proper combustion efficiency.
In summary, altitude has a notable impact on the performance of gas air compressors. The decrease in air density at higher altitudes leads to reduced compressor output, increased compressor workload, potential engine power loss, and considerations for proper sizing and maintenance. Understanding these effects is crucial for selecting and operating gas air compressors effectively in various altitude conditions.
How Do You Choose the Right Size Gas Air Compressor for Your Needs?
Choosing the right size gas air compressor is crucial to ensure optimal performance and efficiency for your specific needs. Selecting a compressor that is too small may result in insufficient airflow or pressure, while choosing one that is too large can lead to unnecessary energy consumption and higher costs. Here’s a detailed explanation of the factors to consider when choosing the right size gas air compressor:
1. Required Airflow:
Determine the airflow requirements of your applications. Consider the tools, equipment, or processes that will be powered by the compressor and their respective airflow demands. The required airflow is typically measured in cubic feet per minute (CFM). Determine the total CFM required, taking into account any simultaneous or intermittent tool usage.
2. Operating Pressure:
Identify the operating pressure required for your applications. Different tools and systems have specific pressure requirements, measured in pounds per square inch (PSI). Ensure that the compressor you choose can deliver the required pressure consistently.
3. Duty Cycle:
Consider the duty cycle, which refers to the amount of time the compressor will be in operation within a given period. Some applications may require continuous operation, while others involve intermittent or occasional use. Take into account the duty cycle to ensure that the compressor can handle the expected workload without overheating or experiencing excessive wear.
4. Tank Size:
The tank size of a gas air compressor determines its ability to store compressed air and provide a steady supply. A larger tank can help accommodate fluctuations in demand and reduce the frequency of the compressor cycling on and off. Consider the required storage capacity based on the specific applications and the desired balance between continuous operation and storage capacity.
5. Power Source:
Gas air compressors can be powered by different fuels, such as gasoline, diesel, natural gas, or propane. Consider the availability and cost of the fuel options in your location, as well as the specific requirements of your applications. Choose a compressor that is compatible with a power source that suits your needs.
6. Portability:
Determine if portability is a requirement for your applications. If you need to move the compressor to different job sites or locations, consider a portable model with features like wheels, handles, or a compact design that facilitates easy transportation.
7. Noise Level:
If noise is a concern in your working environment, consider the noise level of the compressor. Gas air compressors can vary in their noise output, and certain models may have noise-reducing features or insulation to minimize sound emissions.
8. Manufacturer Recommendations:
Consult the manufacturer’s recommendations and guidelines for selecting the appropriate compressor size for your specific needs. Manufacturers often provide guidelines based on the anticipated applications, airflow requirements, and other factors to help you make an informed decision.
By considering these factors and carefully assessing your specific requirements, you can choose the right size gas air compressor that meets your airflow, pressure, duty cycle, and other operational needs. It’s advisable to consult with industry professionals or compressor experts for guidance, especially for complex or specialized applications.
editor by CX 2024-02-22