China factory Oxygen Concentrator Air Compressor Medical Oilless air compressor for sale

Product Description

 

Oxygen Concentrator Air Compressor Medical Oilless           
  

 

Introduction

Oxygen Concentrator Air Compressor is a booster developed by our company Cape-Golden. The Oxygen Concentrator Air Compressor is oil free design, guide ring, piston ring, piston rod filler are self-lubricating material, oil free lubrication. Bearing parts are lubricated with high temperature resistant grease and do not contact with the compression medium to avoid pollution to the gas in the compression process and ensure the purity of the gas. 

Microcomputer controller control, high exhaust temperature compressor, low intake pressure, high exhaust pressure alarm stop function, high automation level, Oxygen Concentrator Air Compressor operation is more reliable. 

Data remote display and remote control can be configured according to customer requirements.

 

Product Specification

 

Model

Capacity/

Flow Rate

Inlet Pressure Discharge Pressure Power Weight Dimension(L*W*H)
GOW-3/4-150 3m³/h 3-4bar 150bar 3kw 140kg 850*640*680mm
GOW-5/4-150 5m³/h 3-4bar 150bar 3.5kw 320kg 1000*800*1100mm
GOW-10/4-150 10m³/h 3-4bar 150bar 5kw 320kg 1000*800*1100mm
GOW-15/4-150 15m³/h 3-4bar 150bar 11.5kw 960kg 1650*950*1470mm
GOW-20/4-150 20m³/h 3-4bar 150bar 12kw 960kg 1650*950*1470mm
GOW-30/4-150 30m³/h 3-4bar 150bar 13.5kw 960kg 1650*950*1470mm
GOW-40/4-150 40m³/h 3-4bar 150bar 15kw 960kg 1650*950*1470mm
GOW-50/4-150 50m³/h 3-4bar 150bar 17kw 960kg 1650*950*1470mm

Feature

The working pressure range of Oxygen Concentrator Air Compressor is large. Different types of Oxygen Concentrator Air Compressor can be used to obtain different pressure areas, and the input and output pressure can be adjusted accordingly.

(1) The working pressure range is large. Different types of Oxygen Concentrator Air Compressor can be used to obtain different pressure areas, and the input and output pressure can be adjusted accordingly.
(2) Wide flow range, for all types of pumps only 1bar pressure can work smoothly, at this time to obtain the minimum flow, adjust the air intake can get different flow.
(3) Easy to control, from simple manual control to complete automatic control can meet the requirements.
(4) Automatic restart. No matter what reason causes the pressure drop of the pressure retaining loop, it will automatically restart to supplement the leakage pressure and keep the loop pressure constant.
(5) Safe operation, gas driven, no arc and spark, can be used in dangerous occasions.
(6) The maximum energy saving can reach 70%, because maintaining the pressure does not consume any energy.

 

Product Presentation

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Hydrogen, Nitrogen, Oxygen, Ozone
Purpose: Gas Filling
Parts: Valve
Application Fields: Medical
Noise Level: Low
Machine Size: Medium
Samples:
US$ 10780/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can Gas Air Compressors Be Used in Cold Weather Conditions?

Gas air compressors are generally designed to operate in a wide range of environmental conditions, including cold weather. However, there are certain considerations and precautions to keep in mind when using gas air compressors in cold weather conditions. Here’s a detailed explanation:

1. Cold Start-Up:

In cold weather, starting a gas air compressor can be more challenging due to the low temperatures affecting the engine’s performance. It is important to follow the manufacturer’s recommendations for cold start procedures, which may include preheating the engine, using a cold weather starting aid, or ensuring the proper fuel mixture. These measures help facilitate smooth start-up and prevent potential damage to the engine.

2. Fuel Type:

Consider the type of fuel used in the gas air compressor. Some fuels, such as gasoline, can be more susceptible to cold weather issues like vapor lock or fuel line freezing. In extremely cold conditions, it may be necessary to use a fuel additive or switch to a fuel type that is better suited for cold weather operation, such as winter-grade gasoline or propane.

3. Lubrication:

Cold temperatures can affect the viscosity of the oil used in the compressor’s engine. It is important to use the recommended oil grade suitable for cold weather conditions. Thicker oil can become sluggish and impede proper lubrication, while oil that is too thin may not provide adequate protection. Consult the manufacturer’s guidelines for the appropriate oil viscosity range for cold weather operation.

4. Moisture Management:

In cold weather, moisture can condense more readily in the compressed air system. It is crucial to properly drain the moisture from the compressor tank and ensure the air lines are free from any accumulated moisture. Failure to manage moisture can lead to corrosion, freezing of air lines, and decreased performance.

5. Protection from Freezing:

In extremely cold conditions, it is important to protect the gas air compressor from freezing. This may involve using insulated covers or enclosures, providing heat sources in the compressor area, or storing the compressor in a temperature-controlled environment when not in use. Taking measures to prevent freezing helps maintain proper operation and prevents potential damage to the compressor components.

6. Monitoring Performance:

Regularly monitor the performance of the gas air compressor in cold weather conditions. Pay attention to any changes in operation, such as reduced air pressure, increased noise, or difficulties in starting. Promptly address any issues and consult the manufacturer or a qualified technician if necessary.

By considering these factors and taking appropriate precautions, gas air compressors can be effectively used in cold weather conditions. However, it is important to consult the specific guidelines provided by the manufacturer for your compressor model, as they may have additional recommendations or specifications for cold weather operation.

air compressor

What Are the Key Components of a Gas Air Compressor Control Panel?

A gas air compressor control panel typically consists of several key components. Here’s a detailed explanation:

1. Power Switch:

The power switch allows the operator to turn the compressor on or off. It is usually a toggle switch or a push-button switch located on the control panel.

2. Pressure Gauges:

Pressure gauges display the compressed air pressure at different stages of the compression process. Commonly, there are two pressure gauges: one to measure the incoming air pressure (suction pressure) and another to measure the outgoing compressed air pressure (discharge pressure).

3. Control Knobs or Buttons:

Control knobs or buttons are used to adjust and set various parameters of the compressor operation. These controls may include pressure settings, on/off timers, automatic start/stop functions, and other operational parameters specific to the compressor model.

4. Emergency Stop Button:

An emergency stop button is a critical safety feature that immediately shuts down the compressor in case of an emergency. Pressing the emergency stop button cuts off power to the compressor and stops its operation.

5. Motor Start/Stop Buttons:

Motor start and stop buttons allow the operator to manually start or stop the compressor motor. These buttons are used when manual control of the motor is required, such as during maintenance or troubleshooting.

6. Control Indicators:

Control indicators include various lights or LEDs that provide visual feedback about the compressor’s status and operation. These indicators may include power indicators, motor running indicators, pressure indicators, and fault indicators to signal any malfunctions or abnormal conditions.

7. Control Panel Display:

Some gas air compressors feature a control panel display that provides real-time information and feedback on the compressor’s performance. The display may show parameters such as operating pressure, temperature, maintenance alerts, fault codes, and other relevant information.

8. Start/Stop Control Circuit:

The start/stop control circuit is responsible for initiating and controlling the motor start and stop sequences. It typically includes relays, contactors, and other electrical components that enable the control panel to safely start and stop the compressor motor.

9. Safety and Protection Devices:

Gas air compressor control panels may incorporate safety and protection devices to safeguard the compressor and prevent potential damage or hazardous situations. These devices can include overload relays, thermal protection, pressure relief valves, and other safety features.

10. Control Panel Enclosure:

The control panel enclosure houses and protects the electrical components and wiring of the control panel. It provides insulation, protection from dust and moisture, and ensures the safety of the operator.

In summary, a gas air compressor control panel typically includes a power switch, pressure gauges, control knobs or buttons, emergency stop button, motor start/stop buttons, control indicators, control panel display (if applicable), start/stop control circuit, safety and protection devices, and a control panel enclosure. These components work together to monitor and control the compressor’s operation, ensure safety, and provide essential information to the operator.

air compressor

What Fuels Are Commonly Used in Gas Air Compressors?

Gas air compressors can be powered by various fuels depending on the specific model and design. The choice of fuel depends on factors such as availability, cost, convenience, and environmental considerations. Here’s a detailed explanation of the fuels commonly used in gas air compressors:

1. Gasoline:

Gasoline is a widely used fuel in gas air compressors, particularly in portable models. Gasoline-powered compressors are popular due to the widespread availability of gasoline and the convenience of refueling. Gasoline engines are generally easy to start, and gasoline is relatively affordable in many regions. However, gasoline-powered compressors may emit more exhaust emissions compared to some other fuel options.

2. Diesel:

Diesel fuel is another common choice for gas air compressors, especially in larger industrial models. Diesel engines are known for their efficiency and durability, making them suitable for heavy-duty applications. Diesel fuel is often more cost-effective than gasoline, and diesel-powered compressors typically offer better fuel efficiency and longer runtime. Diesel compressors are commonly used in construction sites, mining operations, and other industrial settings.

3. Natural Gas:

Natural gas is a clean-burning fuel option for gas air compressors. It is a popular choice in areas where natural gas infrastructure is readily available. Natural gas compressors are often used in natural gas processing plants, pipeline operations, and other applications where natural gas is abundant. Natural gas-powered compressors offer lower emissions compared to gasoline or diesel, making them environmentally friendly.

4. Propane:

Propane, also known as liquefied petroleum gas (LPG), is commonly used as a fuel in gas air compressors. Propane-powered compressors are popular in construction, agriculture, and other industries where propane is used for various applications. Propane is stored in portable tanks, making it convenient for use in portable compressors. Propane-powered compressors are known for their clean combustion, low emissions, and easy availability.

5. Biogas:

In specific applications, gas air compressors can be fueled by biogas, which is produced from the decomposition of organic matter such as agricultural waste, food waste, or wastewater. Biogas compressors are used in biogas production facilities, landfills, and other settings where biogas is generated and utilized as a renewable energy source. The use of biogas as a fuel in compressors contributes to sustainability and reduces dependence on fossil fuels.

It’s important to note that the availability and suitability of these fuel options may vary depending on the region, infrastructure, and specific application requirements. When selecting a gas air compressor, it’s crucial to consider the compatibility of the compressor with the available fuel sources and to follow the manufacturer’s guidelines regarding fuel selection, storage, and safety precautions.

China factory Oxygen Concentrator Air Compressor Medical Oilless   air compressor for saleChina factory Oxygen Concentrator Air Compressor Medical Oilless   air compressor for sale
editor by CX 2024-04-30