Product Description
Product Description
ZIQI CHINAMFG Screw Air Compressor Advantages:
A.80% components of CHINAMFG Compressor adopt global well known reliable brand to make sure the air compressor with high quality,durable,energy saving:
1.Core part:Germany GHH RAND screw air end ;
2.Motor:adopt Brazil WEG brand,the second biggest motor manufacturer in the world,IE4 energy saving standard 3 phase induction motor,IP55 protection;
3.Italian EURE oil air vessel ,the lead pressure vessel manufacturer in the world;
4.Italian Manuli oil tube ;
5.French Schneider electric system;
6.Sweden CHINAMFG bearings
Energy saving:
The air compressor equiped the frequency inverter,to make the air compressor with variable speed drive [VSD].The principle of VSD is to adjust the motor rotation speed automatically according to the actual air consumption. The reduced system pressure decreases the total energy consumption of the whole system, which can reduce energy costs by 35% or more.
Technical Parameter
Model | Air pressure | Max air displacement | Motor power | transmission | dimension | Weight | Noise | Outlet | ||||||
cooling type | ||||||||||||||
mpa | bar(e) | psi(g) | m3/min | cfm | hp | kw | belt drive & air cooling |
L(mm) | W(mm) | H(mm) | Kgs | dB(A) | mm | |
GA-3.7A | 0.7 | 7 | 102 | 0.55 | 19 | 5 | 3.7 | 680 | 660 | 780 | 220 | 60±2 | 20 | |
0.8 | 8 | 116 | 0.45 | 16 | ||||||||||
1 | 10 | 145 | 0.35 | 12 | ||||||||||
GA-5.5A | 0.7 | 7 | 102 | 0.8 | 28 | 7 | 5.5 | 680 | 660 | 780 | 230 | 61±2 | 20 | |
0.8 | 8 | 116 | 0.7 | 25 | ||||||||||
1 | 10 | 145 | 0.6 | 21 | ||||||||||
1.3 | 13 | 189 | 0.5 | 18 | ||||||||||
GAS-7.5A VFC | 0.7 | 7 | 102 | 1.3 | 46 | 10 | 7.5 | 950 | 650 | 915 | 270 | 62±2 | 20 | |
0.8 | 8 | 116 | 1.2 | 42 | ||||||||||
1 | 10 | 145 | 1.1 | 39 | ||||||||||
1.3 | 13 | 189 | 0.9 | 32 | ||||||||||
GAS-11A VFC | 0.7 | 7 | 102 | 1.8 | 64 | 15 | 11 | 950 | 650 | 915 | 280 | 63±2 | 20 | |
0.8 | 8 | 116 | 1.7 | 60 | ||||||||||
1 | 10 | 145 | 1.5 | 53 | ||||||||||
1.3 | 13 | 189 | 1.2 | 42 | ||||||||||
GAS-15A VFC | 0.7 | 7 | 102 | 2.7 | 95 | 20 | 15 | 1260 | 850 | 1220 | 540 | 66±2 | 25 | |
0.8 | 8 | 116 | 2.5 | 88 | ||||||||||
1 | 10 | 145 | 2.3 | 81 | ||||||||||
1.3 | 13 | 189 | 2 | 71 | ||||||||||
GAS-18.5A VFC | 0.7 | 7 | 102 | 3.2 | 113 | 25 | 18.5 | 1260 | 850 | 1220 | 550 | 67±2 | 25 | |
0.8 | 8 | 116 | 3 | 106 | ||||||||||
1 | 10 | 145 | 2.8 | 99 | ||||||||||
1.3 | 13 | 189 | 2.4 | 85 | ||||||||||
GAS-22A VFC | 0.7 | 7 | 102 | 3.8 | 134 | 30 | 22 | 1260 | 850 | 1220 | 560 | 67±2 | 25 | |
0.8 | 8 | 116 | 3.6 | 127 | ||||||||||
1 | 10 | 145 | 3.2 | 113 | ||||||||||
1.3 | 13 | 189 | 2.8 | 99 | ||||||||||
GAS-30A VFC | 0.7 | 7 | 102 | 5.7 | 201 | 40 | 30 | 1500 | 970 | 1375 | 780 | 67±2 | 40 | |
0.8 | 8 | 116 | 5.5 | 194 | ||||||||||
1 | 10 | 145 | 5 | 177 | ||||||||||
1.3 | 13 | 189 | 4.5 | 159 | ||||||||||
GAS-37A VFC | 0.7 | 7 | 102 | 6.8 | 240 | 50 | 37 | 1500 | 970 | 1375 | 800 | 68±2 | 40 | |
0.8 | 8 | 116 | 6.31 | 222 | ||||||||||
1 | 10 | 145 | 5.7 | 201 | ||||||||||
1.3 | 13 | 189 | 5 | 177 | ||||||||||
GAS-45A VFC | 0.7 | 7 | 102 | 7.9 | 279 | 60 | 45 | 1500 | 970 | 1375 | 820 | 69±2 | 40 | |
0.8 | 8 | 116 | 7.4 | 261 | ||||||||||
1 | 10 | 145 | 6.9 | 244 | ||||||||||
1.3 | 13 | 189 | 6.1 | 215 | ||||||||||
GAS-55A VFC | 0.7 | 7 | 102 | 10.9 | 385 | 75 | 55 | direct drive &air cooling or water cooling | 2150 | 1326 | 1766 | 1550 | 69±2 | 50 |
0.8 | 8 | 116 | 10.4 | 367 | ||||||||||
1 | 10 | 145 | 9.4 | 332 | ||||||||||
1.3 | 13 | 189 | 8.6 | 304 | ||||||||||
GAS-75A VFC | 0.7 | 7 | 102 | 14.5 | 512 | 100 | 75 | 2150 | 1326 | 1766 | 1600 | 70±2 | 50 | |
0.8 | 8 | 116 | 13.8 | 487 | ||||||||||
1 | 10 | 145 | 12.6 | 445 | ||||||||||
1.3 | 13 | 189 | 11.2 | 395 | ||||||||||
GAS-90A VFC | 0.7 | 7 | 102 | 17 | 600 | 120 | 90 | 2545 | 1450 | 1900 | 2500 | 75±2 | 65 | |
0.8 | 8 | 116 | 16.5 | 583 | ||||||||||
1 | 10 | 145 | 15.2 | 537 | ||||||||||
1.3 | 13 | 189 | 14 | 494 |
*For other requirements,please contact the salesman.
Company Information
Packaging & Shipping
FAQ
Are you manufacturer?
ZIQI: Yes,we are professional air compressor manufacturer over 10 years and our factory located in ZheJiang .
How long is your air compressor warranty?
ZIQI: For 1 year.
Do you provide After- sales service parts?
ZIQI: Of course, We could provide easy- consumable spares.
How long could your air compressor be used?
ZIQI: Generally, more than 10 years.
How about your price?
ZIQI: Based on high quality, Our price is very competitive in this market all over the world.
How about your customer service?
ZIQI: For email, we could reply our customers’ emails within 2 hours.
Do you support OEM?
ZIQI: YES, and we also provide multiple models to select.
How to get quicker quotation?
When you send us inquiry, please confirm below information at the same time:
* What is the air displacement (m3/min,cfm/min)?
* What is the air pressure (mpa,bar,psi)?
* What is the voltage in your factory (v/p/Hz)?
* It is ok if you need air tank, air dryer and filters.
This information is helpful for us to check suitable equipment solution and quotation quickly.
Hot Products
Combined Screw Air Compressor 5hp | Combined Screw Air Compressor 20hp | Oil Free Scroll Air Compressor |
Contact
Bob Cui | Overseas Sale Manager
ZIQI Compressor(ZheJiang )Co.,Ltd
Add:No.280,Wangwei West Rd.Fengjing Industrial Park,Xihu (West Lake) Dis.n Dist.,ZheJiang ,CN.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Support |
---|---|
Warranty: | Online Support |
Lubrication Style: | Oil-less |
Cooling System: | Air Cooling |
Power Source: | AC Power |
Cylinder Position: | Vertical |
Customization: |
Available
|
|
---|
Can Gas Air Compressors Be Used for Well Drilling?
Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:
1. Air Drilling Method:
Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.
2. Benefits of Gas Air Compressors:
Gas air compressors offer several advantages for well drilling:
- Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
- Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
- Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
- Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.
3. Compressor Selection:
When selecting a gas air compressor for well drilling, several factors should be considered:
- Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
- Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
- Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.
4. Safety Considerations:
It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.
5. Other Considerations:
While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.
In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.
Can Gas Air Compressors Be Used in Agriculture?
Yes, gas air compressors can be used in various agricultural applications. Here’s a detailed explanation:
1. Pneumatic Tools and Equipment:
Gas air compressors can power a wide range of pneumatic tools and equipment used in agriculture. These tools include pneumatic drills, impact wrenches, nail guns, staplers, and pneumatic pumps. Gas air compressors provide the necessary compressed air to operate these tools, making various tasks more efficient and convenient on the farm.
2. Irrigation Systems:
Gas air compressors can be used to power irrigation systems in agriculture. They can supply compressed air to operate pneumatic valves, which control the flow of water in irrigation networks. Gas air compressors ensure reliable and efficient operation of irrigation systems, facilitating the distribution of water to crops in a controlled manner.
3. Grain Handling and Storage:
Air compressors play a vital role in grain handling and storage facilities. They are used to power aeration systems that provide airflow to grains stored in silos or bins. Aeration helps control the temperature and moisture levels, preventing spoilage and maintaining grain quality. Gas air compressors provide the airflow necessary for effective aeration in grain storage operations.
4. Cleaning and Maintenance:
In agriculture, gas air compressors are commonly used for cleaning and maintenance tasks. They can power air blowers or air guns to remove dust, debris, or chaff from machinery, equipment, or storage areas. Gas air compressors provide a high-pressure stream of compressed air, facilitating efficient cleaning and maintenance operations.
5. Livestock Operations:
Gas air compressors find applications in livestock operations as well. They can power pneumatic equipment used for animal care, such as pneumatic nail guns for building or repairing livestock enclosures, pneumatic pumps for water distribution, or pneumatic tools for general maintenance tasks.
6. Portable and Versatile:
Gas air compressors are often portable and can be easily transported around the farm, allowing flexibility in agricultural operations. Their versatility makes them suitable for various tasks, from powering tools and equipment in the field to providing compressed air for maintenance or cleaning in different farm locations.
7. Remote Locations:
In agricultural settings where access to electricity may be limited, gas air compressors offer a reliable alternative. They can be powered by gasoline or diesel engines, providing compressed air even in remote areas without electrical infrastructure.
8. Considerations:
When using gas air compressors in agriculture, it is essential to consider factors such as compressor size, capacity, and maintenance requirements. Selecting the right compressor based on the specific needs of the agricultural applications ensures optimal performance and efficiency.
In summary, gas air compressors have various applications in agriculture. They can power pneumatic tools and equipment, operate irrigation systems, facilitate grain handling and storage, assist in cleaning and maintenance tasks, support livestock operations, and offer portability and versatility. Gas air compressors contribute to increased efficiency, convenience, and productivity in agricultural operations.
Are There Different Types of Gas Air Compressors Available?
Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:
1. Reciprocating Gas Air Compressors:
Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.
2. Rotary Screw Gas Air Compressors:
Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.
3. Rotary Vane Gas Air Compressors:
Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.
4. Centrifugal Gas Air Compressors:
Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.
5. Oil-Free Gas Air Compressors:
Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.
6. Portable Gas Air Compressors:
Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.
7. High-Pressure Gas Air Compressors:
High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.
8. Biogas Air Compressors:
Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.
These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.
editor by CX 2024-05-15
China supplier Hot Sale Frequency Air CHINAMFG for Medical air compressor for car
Product Description
Product Description
ZIQI CHINAMFG Screw Air Compressor Advantages:
A.80% components of CHINAMFG Compressor adopt global well known reliable brand to make sure the air compressor with high quality,durable,energy saving:
1.Core part:Germany GHH RAND screw air end ;
2.Motor:adopt Brazil WEG brand,the second biggest motor manufacturer in the world,IE4 energy saving standard 3 phase induction motor,IP55 protection;
3.Italian EURE oil air vessel ,the lead pressure vessel manufacturer in the world;
4.Italian Manuli oil tube ;
5.French Schneider electric system;
6.Sweden CHINAMFG bearings
Energy saving:
The air compressor equiped the frequency inverter,to make the air compressor with variable speed drive [VSD].The principle of VSD is to adjust the motor rotation speed automatically according to the actual air consumption. The reduced system pressure decreases the total energy consumption of the whole system, which can reduce energy costs by 35% or more.
Technical Parameter
Model | Air pressure | Max air displacement | Motor power | transmission | dimension | Weight | Noise | Outlet | ||||||
cooling type | ||||||||||||||
mpa | bar(e) | psi(g) | m3/min | cfm | hp | kw | belt drive & air cooling |
L(mm) | W(mm) | H(mm) | Kgs | dB(A) | mm | |
GA-3.7A | 0.7 | 7 | 102 | 0.55 | 19 | 5 | 3.7 | 680 | 660 | 780 | 220 | 60±2 | 20 | |
0.8 | 8 | 116 | 0.45 | 16 | ||||||||||
1 | 10 | 145 | 0.35 | 12 | ||||||||||
GA-5.5A | 0.7 | 7 | 102 | 0.8 | 28 | 7 | 5.5 | 680 | 660 | 780 | 230 | 61±2 | 20 | |
0.8 | 8 | 116 | 0.7 | 25 | ||||||||||
1 | 10 | 145 | 0.6 | 21 | ||||||||||
1.3 | 13 | 189 | 0.5 | 18 | ||||||||||
GAS-7.5A VFC | 0.7 | 7 | 102 | 1.3 | 46 | 10 | 7.5 | 950 | 650 | 915 | 270 | 62±2 | 20 | |
0.8 | 8 | 116 | 1.2 | 42 | ||||||||||
1 | 10 | 145 | 1.1 | 39 | ||||||||||
1.3 | 13 | 189 | 0.9 | 32 | ||||||||||
GAS-11A VFC | 0.7 | 7 | 102 | 1.8 | 64 | 15 | 11 | 950 | 650 | 915 | 280 | 63±2 | 20 | |
0.8 | 8 | 116 | 1.7 | 60 | ||||||||||
1 | 10 | 145 | 1.5 | 53 | ||||||||||
1.3 | 13 | 189 | 1.2 | 42 | ||||||||||
GAS-15A VFC | 0.7 | 7 | 102 | 2.7 | 95 | 20 | 15 | 1260 | 850 | 1220 | 540 | 66±2 | 25 | |
0.8 | 8 | 116 | 2.5 | 88 | ||||||||||
1 | 10 | 145 | 2.3 | 81 | ||||||||||
1.3 | 13 | 189 | 2 | 71 | ||||||||||
GAS-18.5A VFC | 0.7 | 7 | 102 | 3.2 | 113 | 25 | 18.5 | 1260 | 850 | 1220 | 550 | 67±2 | 25 | |
0.8 | 8 | 116 | 3 | 106 | ||||||||||
1 | 10 | 145 | 2.8 | 99 | ||||||||||
1.3 | 13 | 189 | 2.4 | 85 | ||||||||||
GAS-22A VFC | 0.7 | 7 | 102 | 3.8 | 134 | 30 | 22 | 1260 | 850 | 1220 | 560 | 67±2 | 25 | |
0.8 | 8 | 116 | 3.6 | 127 | ||||||||||
1 | 10 | 145 | 3.2 | 113 | ||||||||||
1.3 | 13 | 189 | 2.8 | 99 | ||||||||||
GAS-30A VFC | 0.7 | 7 | 102 | 5.7 | 201 | 40 | 30 | 1500 | 970 | 1375 | 780 | 67±2 | 40 | |
0.8 | 8 | 116 | 5.5 | 194 | ||||||||||
1 | 10 | 145 | 5 | 177 | ||||||||||
1.3 | 13 | 189 | 4.5 | 159 | ||||||||||
GAS-37A VFC | 0.7 | 7 | 102 | 6.8 | 240 | 50 | 37 | 1500 | 970 | 1375 | 800 | 68±2 | 40 | |
0.8 | 8 | 116 | 6.31 | 222 | ||||||||||
1 | 10 | 145 | 5.7 | 201 | ||||||||||
1.3 | 13 | 189 | 5 | 177 | ||||||||||
GAS-45A VFC | 0.7 | 7 | 102 | 7.9 | 279 | 60 | 45 | 1500 | 970 | 1375 | 820 | 69±2 | 40 | |
0.8 | 8 | 116 | 7.4 | 261 | ||||||||||
1 | 10 | 145 | 6.9 | 244 | ||||||||||
1.3 | 13 | 189 | 6.1 | 215 | ||||||||||
GAS-55A VFC | 0.7 | 7 | 102 | 10.9 | 385 | 75 | 55 | direct drive &air cooling or water cooling | 2150 | 1326 | 1766 | 1550 | 69±2 | 50 |
0.8 | 8 | 116 | 10.4 | 367 | ||||||||||
1 | 10 | 145 | 9.4 | 332 | ||||||||||
1.3 | 13 | 189 | 8.6 | 304 | ||||||||||
GAS-75A VFC | 0.7 | 7 | 102 | 14.5 | 512 | 100 | 75 | 2150 | 1326 | 1766 | 1600 | 70±2 | 50 | |
0.8 | 8 | 116 | 13.8 | 487 | ||||||||||
1 | 10 | 145 | 12.6 | 445 | ||||||||||
1.3 | 13 | 189 | 11.2 | 395 | ||||||||||
GAS-90A VFC | 0.7 | 7 | 102 | 17 | 600 | 120 | 90 | 2545 | 1450 | 1900 | 2500 | 75±2 | 65 | |
0.8 | 8 | 116 | 16.5 | 583 | ||||||||||
1 | 10 | 145 | 15.2 | 537 | ||||||||||
1.3 | 13 | 189 | 14 | 494 |
*For other requirements,please contact the salesman.
Company Information
Packaging & Shipping
FAQ
Are you manufacturer?
ZIQI: Yes,we are professional air compressor manufacturer over 10 years and our factory located in ZheJiang .
How long is your air compressor warranty?
ZIQI: For 1 year.
Do you provide After- sales service parts?
ZIQI: Of course, We could provide easy- consumable spares.
How long could your air compressor be used?
ZIQI: Generally, more than 10 years.
How about your price?
ZIQI: Based on high quality, Our price is very competitive in this market all over the world.
How about your customer service?
ZIQI: For email, we could reply our customers’ emails within 2 hours.
Do you support OEM?
ZIQI: YES, and we also provide multiple models to select.
How to get quicker quotation?
When you send us inquiry, please confirm below information at the same time:
* What is the air displacement (m3/min,cfm/min)?
* What is the air pressure (mpa,bar,psi)?
* What is the voltage in your factory (v/p/Hz)?
* It is ok if you need air tank, air dryer and filters.
This information is helpful for us to check suitable equipment solution and quotation quickly.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Support |
---|---|
Warranty: | 2 Years |
Lubrication Style: | Lubricated |
Cooling System: | Air Cooling |
Power Source: | AC Power |
Cylinder Position: | Vertical |
Customization: |
Available
|
|
---|
Can Gas Air Compressors Be Used for High-Pressure Applications?
Gas air compressors can be used for high-pressure applications, but there are certain considerations to keep in mind. Here’s a detailed explanation:
Gas air compressors are available in various sizes and configurations, and their suitability for high-pressure applications depends on factors such as the compressor’s design, power output, and the specific requirements of the application. Here are some key points to consider:
1. Compressor Design:
Not all gas air compressors are designed to handle high-pressure applications. Some compressors are specifically built for low-to-medium pressure ranges, while others are designed to deliver higher pressure outputs. It is important to select a gas air compressor model that is rated for the desired pressure range. The compressor’s specifications and manufacturer’s guidelines will provide information on the maximum pressure it can generate.
2. Power Output:
The power output of a gas air compressor is a crucial factor in determining its suitability for high-pressure applications. High-pressure compressors require more power to achieve and sustain the desired pressure levels. It is important to ensure that the gas air compressor has sufficient power output to meet the demands of the specific high-pressure application.
3. Cylinder Configuration:
The cylinder configuration of the gas air compressor can also affect its ability to handle high-pressure applications. Compressors with multiple cylinders or stages are designed to generate higher pressures compared to compressors with a single cylinder. Multi-stage compressors compress the air in multiple steps, allowing for higher pressure ratios.
4. Safety Considerations:
High-pressure applications require careful attention to safety considerations. Gas air compressors used for high-pressure applications should be equipped with appropriate safety features such as pressure relief valves, pressure gauges, and safety shut-off systems. It is crucial to follow all safety guidelines and regulations to ensure safe operation.
5. Maintenance and Inspection:
Regular maintenance and inspection are essential for gas air compressors used in high-pressure applications. High-pressure operation can put additional stress on the compressor components, and proper maintenance helps ensure optimal performance and safety. Regular inspections and adherence to maintenance schedules will help identify and address any potential issues before they become major problems.
6. Application-specific Considerations:
Each high-pressure application may have specific requirements and considerations. It is important to evaluate factors such as the required pressure level, duty cycle, flow rate, and any specific environmental conditions that may impact the performance of the gas air compressor. Consulting with the compressor manufacturer or a qualified professional can help determine the suitability of a gas air compressor for a particular high-pressure application.
In summary, gas air compressors can be used for high-pressure applications, provided that they are designed, rated, and configured appropriately. It is essential to consider factors such as compressor design, power output, safety features, maintenance requirements, and application-specific considerations to ensure safe and reliable operation at high pressures.
Can Gas Air Compressors Be Used for Sandblasting?
Yes, gas air compressors can be used for sandblasting. Sandblasting is a process that involves propelling abrasive materials, such as sand or grit, at high speeds to clean, etch, or prepare surfaces. Here’s a detailed explanation:
1. Compressed Air Requirement:
Sandblasting requires a reliable source of compressed air to propel the abrasive material. Gas air compressors, particularly those powered by gasoline or diesel engines, can provide the necessary compressed air for sandblasting operations. The compressors supply a continuous flow of compressed air at the required pressure to propel the abrasive material through the sandblasting equipment.
2. Portable and Versatile:
Gas air compressors are often portable and can be easily transported to different job sites, making them suitable for sandblasting applications in various locations. The portability of gas air compressors allows flexibility and convenience, especially when sandblasting needs to be performed on large structures, such as buildings, tanks, or bridges.
3. Pressure and Volume:
When selecting a gas air compressor for sandblasting, it is essential to consider the required pressure and volume of compressed air. Sandblasting typically requires higher pressures to effectively propel the abrasive material and achieve the desired surface treatment. Gas air compressors can provide higher pressure outputs compared to electric compressors, making them well-suited for sandblasting applications.
4. Compressor Size and Capacity:
The size and capacity of the gas air compressor should be chosen based on the specific requirements of the sandblasting project. Factors to consider include the size of the sandblasting equipment, the length of the air hose, and the desired duration of continuous operation. Selecting a gas air compressor with an appropriate tank size and airflow capacity ensures a consistent supply of compressed air during sandblasting.
5. Maintenance Considerations:
Regular maintenance is crucial for gas air compressors used in sandblasting applications. The abrasive nature of the sand or grit used in sandblasting can introduce particles into the compressor system, potentially causing wear or clogging. Regular inspection, cleaning, and maintenance of the compressor, including filters, valves, and hoses, help prevent damage and ensure optimal performance.
6. Safety Precautions:
When using gas air compressors for sandblasting, it is essential to follow appropriate safety precautions. Sandblasting generates airborne particles and dust, which can be hazardous if inhaled. Ensure proper ventilation, wear appropriate personal protective equipment (PPE), such as respiratory masks, goggles, and protective clothing, and follow recommended safety guidelines to protect the operator and others in the vicinity.
In summary, gas air compressors can be effectively used for sandblasting applications. They provide the necessary compressed air to propel abrasive materials, offer portability and versatility, and can deliver the required pressure and volume for efficient sandblasting operations. Proper compressor selection, maintenance, and adherence to safety precautions contribute to successful and safe sandblasting processes.
What Are the Advantages of Using a Gas Air Compressor Over an Electric One?
Using a gas air compressor offers several advantages over an electric air compressor. Gas-powered compressors provide unique benefits in terms of mobility, versatility, power, and convenience. Here’s a detailed explanation of the advantages of using a gas air compressor:
1. Portability and Mobility:
Gas air compressors are typically more portable and mobile compared to electric compressors. They often feature handles, wheels, or trailers, allowing for easy transportation to different locations. This portability is especially advantageous in situations where compressed air is needed at remote job sites, outdoor events, or areas without access to electricity. Gas air compressors can be easily moved and positioned where they are required.
2. Independence from Electricity:
One of the primary advantages of gas air compressors is their independence from electricity. They are powered by gas engines, which means they do not rely on a direct connection to the electrical grid. This makes them suitable for use in areas where electrical power is limited, unreliable, or unavailable. Gas air compressors offer a reliable source of compressed air even in remote locations or during power outages.
3. Versatility in Fuel Options:
Gas air compressors provide versatility in terms of fuel options. They can be powered by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This flexibility allows users to choose the most readily available or cost-effective fuel source based on their specific requirements. It also makes gas compressors adaptable to different environments and fuel availability in various regions.
4. Higher Power Output:
Gas air compressors typically offer higher power output compared to electric compressors. Gas engines can generate more horsepower, allowing gas compressors to deliver greater air pressure and volume. This higher power output is beneficial when operating pneumatic tools or equipment that require a significant amount of compressed air, such as jackhammers, sandblasters, or heavy-duty impact wrenches.
5. Continuous Operation:
Gas air compressors can provide continuous operation without the need for frequent breaks or cooldown periods. Electric compressors may overheat with prolonged use, requiring intermittent rest periods to cool down. Gas compressors, on the other hand, can operate continuously for longer durations without the risk of overheating. This continuous operation capability is particularly advantageous in demanding applications or situations that require extended periods of compressed air usage.
6. Quick Startup and Response:
Gas air compressors offer quick startup and response times. They can be started instantly by simply pulling a cord or pressing a button, whereas electric compressors may require time to power up and reach optimal operating conditions. Gas compressors provide immediate access to compressed air, allowing for efficient and prompt task completion.
7. Durability and Resistance to Voltage Fluctuations:
Gas air compressors are generally more durable and resistant to voltage fluctuations compared to electric compressors. Electric compressors can be affected by voltage drops or surges, which may impact their performance or cause damage. Gas compressors, however, are less susceptible to voltage-related issues, making them reliable in environments where voltage fluctuations are common.
8. Lower Energy Costs:
Gas air compressors can offer lower energy costs compared to electric compressors, depending on the price of the fuel being used. Gasoline or diesel fuel, for example, may be more cost-effective than electricity in certain regions or applications. This cost advantage can result in significant savings over time, especially for high-demand compressed air operations.
Overall, the advantages of using a gas air compressor over an electric one include portability, independence from electricity, fuel versatility, higher power output, continuous operation capability, quick startup and response times, durability, resistance to voltage fluctuations, and potentially lower energy costs. These advantages make gas air compressors a preferred choice in various industries, remote locations, and applications where mobility, power, and reliability are crucial.
editor by CX 2024-05-07
China factory Oxygen Concentrator Air Compressor Medical Oilless air compressor for sale
Product Description
Oxygen Concentrator Air Compressor Medical Oilless
Introduction
Oxygen Concentrator Air Compressor is a booster developed by our company Cape-Golden. The Oxygen Concentrator Air Compressor is oil free design, guide ring, piston ring, piston rod filler are self-lubricating material, oil free lubrication. Bearing parts are lubricated with high temperature resistant grease and do not contact with the compression medium to avoid pollution to the gas in the compression process and ensure the purity of the gas.
Microcomputer controller control, high exhaust temperature compressor, low intake pressure, high exhaust pressure alarm stop function, high automation level, Oxygen Concentrator Air Compressor operation is more reliable.
Data remote display and remote control can be configured according to customer requirements.
Product Specification
Model |
Capacity/ Flow Rate |
Inlet Pressure | Discharge Pressure | Power | Weight | Dimension(L*W*H) |
GOW-3/4-150 | 3m³/h | 3-4bar | 150bar | 3kw | 140kg | 850*640*680mm |
GOW-5/4-150 | 5m³/h | 3-4bar | 150bar | 3.5kw | 320kg | 1000*800*1100mm |
GOW-10/4-150 | 10m³/h | 3-4bar | 150bar | 5kw | 320kg | 1000*800*1100mm |
GOW-15/4-150 | 15m³/h | 3-4bar | 150bar | 11.5kw | 960kg | 1650*950*1470mm |
GOW-20/4-150 | 20m³/h | 3-4bar | 150bar | 12kw | 960kg | 1650*950*1470mm |
GOW-30/4-150 | 30m³/h | 3-4bar | 150bar | 13.5kw | 960kg | 1650*950*1470mm |
GOW-40/4-150 | 40m³/h | 3-4bar | 150bar | 15kw | 960kg | 1650*950*1470mm |
GOW-50/4-150 | 50m³/h | 3-4bar | 150bar | 17kw | 960kg | 1650*950*1470mm |
Feature
The working pressure range of Oxygen Concentrator Air Compressor is large. Different types of Oxygen Concentrator Air Compressor can be used to obtain different pressure areas, and the input and output pressure can be adjusted accordingly.
(1) | The working pressure range is large. Different types of Oxygen Concentrator Air Compressor can be used to obtain different pressure areas, and the input and output pressure can be adjusted accordingly. |
(2) | Wide flow range, for all types of pumps only 1bar pressure can work smoothly, at this time to obtain the minimum flow, adjust the air intake can get different flow. |
(3) | Easy to control, from simple manual control to complete automatic control can meet the requirements. |
(4) | Automatic restart. No matter what reason causes the pressure drop of the pressure retaining loop, it will automatically restart to supplement the leakage pressure and keep the loop pressure constant. |
(5) | Safe operation, gas driven, no arc and spark, can be used in dangerous occasions. |
(6) | The maximum energy saving can reach 70%, because maintaining the pressure does not consume any energy. |
Product Presentation
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Usage: | Hydrogen, Nitrogen, Oxygen, Ozone |
---|---|
Purpose: | Gas Filling |
Parts: | Valve |
Application Fields: | Medical |
Noise Level: | Low |
Machine Size: | Medium |
Samples: |
US$ 10780/Set
1 Set(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can Gas Air Compressors Be Used in Cold Weather Conditions?
Gas air compressors are generally designed to operate in a wide range of environmental conditions, including cold weather. However, there are certain considerations and precautions to keep in mind when using gas air compressors in cold weather conditions. Here’s a detailed explanation:
1. Cold Start-Up:
In cold weather, starting a gas air compressor can be more challenging due to the low temperatures affecting the engine’s performance. It is important to follow the manufacturer’s recommendations for cold start procedures, which may include preheating the engine, using a cold weather starting aid, or ensuring the proper fuel mixture. These measures help facilitate smooth start-up and prevent potential damage to the engine.
2. Fuel Type:
Consider the type of fuel used in the gas air compressor. Some fuels, such as gasoline, can be more susceptible to cold weather issues like vapor lock or fuel line freezing. In extremely cold conditions, it may be necessary to use a fuel additive or switch to a fuel type that is better suited for cold weather operation, such as winter-grade gasoline or propane.
3. Lubrication:
Cold temperatures can affect the viscosity of the oil used in the compressor’s engine. It is important to use the recommended oil grade suitable for cold weather conditions. Thicker oil can become sluggish and impede proper lubrication, while oil that is too thin may not provide adequate protection. Consult the manufacturer’s guidelines for the appropriate oil viscosity range for cold weather operation.
4. Moisture Management:
In cold weather, moisture can condense more readily in the compressed air system. It is crucial to properly drain the moisture from the compressor tank and ensure the air lines are free from any accumulated moisture. Failure to manage moisture can lead to corrosion, freezing of air lines, and decreased performance.
5. Protection from Freezing:
In extremely cold conditions, it is important to protect the gas air compressor from freezing. This may involve using insulated covers or enclosures, providing heat sources in the compressor area, or storing the compressor in a temperature-controlled environment when not in use. Taking measures to prevent freezing helps maintain proper operation and prevents potential damage to the compressor components.
6. Monitoring Performance:
Regularly monitor the performance of the gas air compressor in cold weather conditions. Pay attention to any changes in operation, such as reduced air pressure, increased noise, or difficulties in starting. Promptly address any issues and consult the manufacturer or a qualified technician if necessary.
By considering these factors and taking appropriate precautions, gas air compressors can be effectively used in cold weather conditions. However, it is important to consult the specific guidelines provided by the manufacturer for your compressor model, as they may have additional recommendations or specifications for cold weather operation.
What Are the Key Components of a Gas Air Compressor Control Panel?
A gas air compressor control panel typically consists of several key components. Here’s a detailed explanation:
1. Power Switch:
The power switch allows the operator to turn the compressor on or off. It is usually a toggle switch or a push-button switch located on the control panel.
2. Pressure Gauges:
Pressure gauges display the compressed air pressure at different stages of the compression process. Commonly, there are two pressure gauges: one to measure the incoming air pressure (suction pressure) and another to measure the outgoing compressed air pressure (discharge pressure).
3. Control Knobs or Buttons:
Control knobs or buttons are used to adjust and set various parameters of the compressor operation. These controls may include pressure settings, on/off timers, automatic start/stop functions, and other operational parameters specific to the compressor model.
4. Emergency Stop Button:
An emergency stop button is a critical safety feature that immediately shuts down the compressor in case of an emergency. Pressing the emergency stop button cuts off power to the compressor and stops its operation.
5. Motor Start/Stop Buttons:
Motor start and stop buttons allow the operator to manually start or stop the compressor motor. These buttons are used when manual control of the motor is required, such as during maintenance or troubleshooting.
6. Control Indicators:
Control indicators include various lights or LEDs that provide visual feedback about the compressor’s status and operation. These indicators may include power indicators, motor running indicators, pressure indicators, and fault indicators to signal any malfunctions or abnormal conditions.
7. Control Panel Display:
Some gas air compressors feature a control panel display that provides real-time information and feedback on the compressor’s performance. The display may show parameters such as operating pressure, temperature, maintenance alerts, fault codes, and other relevant information.
8. Start/Stop Control Circuit:
The start/stop control circuit is responsible for initiating and controlling the motor start and stop sequences. It typically includes relays, contactors, and other electrical components that enable the control panel to safely start and stop the compressor motor.
9. Safety and Protection Devices:
Gas air compressor control panels may incorporate safety and protection devices to safeguard the compressor and prevent potential damage or hazardous situations. These devices can include overload relays, thermal protection, pressure relief valves, and other safety features.
10. Control Panel Enclosure:
The control panel enclosure houses and protects the electrical components and wiring of the control panel. It provides insulation, protection from dust and moisture, and ensures the safety of the operator.
In summary, a gas air compressor control panel typically includes a power switch, pressure gauges, control knobs or buttons, emergency stop button, motor start/stop buttons, control indicators, control panel display (if applicable), start/stop control circuit, safety and protection devices, and a control panel enclosure. These components work together to monitor and control the compressor’s operation, ensure safety, and provide essential information to the operator.
What Fuels Are Commonly Used in Gas Air Compressors?
Gas air compressors can be powered by various fuels depending on the specific model and design. The choice of fuel depends on factors such as availability, cost, convenience, and environmental considerations. Here’s a detailed explanation of the fuels commonly used in gas air compressors:
1. Gasoline:
Gasoline is a widely used fuel in gas air compressors, particularly in portable models. Gasoline-powered compressors are popular due to the widespread availability of gasoline and the convenience of refueling. Gasoline engines are generally easy to start, and gasoline is relatively affordable in many regions. However, gasoline-powered compressors may emit more exhaust emissions compared to some other fuel options.
2. Diesel:
Diesel fuel is another common choice for gas air compressors, especially in larger industrial models. Diesel engines are known for their efficiency and durability, making them suitable for heavy-duty applications. Diesel fuel is often more cost-effective than gasoline, and diesel-powered compressors typically offer better fuel efficiency and longer runtime. Diesel compressors are commonly used in construction sites, mining operations, and other industrial settings.
3. Natural Gas:
Natural gas is a clean-burning fuel option for gas air compressors. It is a popular choice in areas where natural gas infrastructure is readily available. Natural gas compressors are often used in natural gas processing plants, pipeline operations, and other applications where natural gas is abundant. Natural gas-powered compressors offer lower emissions compared to gasoline or diesel, making them environmentally friendly.
4. Propane:
Propane, also known as liquefied petroleum gas (LPG), is commonly used as a fuel in gas air compressors. Propane-powered compressors are popular in construction, agriculture, and other industries where propane is used for various applications. Propane is stored in portable tanks, making it convenient for use in portable compressors. Propane-powered compressors are known for their clean combustion, low emissions, and easy availability.
5. Biogas:
In specific applications, gas air compressors can be fueled by biogas, which is produced from the decomposition of organic matter such as agricultural waste, food waste, or wastewater. Biogas compressors are used in biogas production facilities, landfills, and other settings where biogas is generated and utilized as a renewable energy source. The use of biogas as a fuel in compressors contributes to sustainability and reduces dependence on fossil fuels.
It’s important to note that the availability and suitability of these fuel options may vary depending on the region, infrastructure, and specific application requirements. When selecting a gas air compressor, it’s crucial to consider the compatibility of the compressor with the available fuel sources and to follow the manufacturer’s guidelines regarding fuel selection, storage, and safety precautions.
editor by CX 2024-04-30
China Hot selling 30kw 7-13bar 380V 41HP AC Power Single-Stage Belt Drive Three Phase Energy Saving Screw Air Compressor for Industrial air compressor for sale
Product Description
Product Description
ZIQI CHINAMFG Screw Air Compressor Advantages:
A.80% components of CHINAMFG Compressor adopt global well known reliable brand to make sure the air compressor with high quality,durable,energy saving:
1.Core part:Germany GHH RAND screw air end ;
2.Motor:adopt Brazil WEG brand,the second biggest motor manufacturer in the world,IE4 energy saving standard 3 phase induction motor,IP55 protection;
3.Italian EURE oil air vessel ,the lead pressure vessel manufacturer in the world;
4.Italian Manuli oil tube ;
5.French Schneider electric system;
6.Sweden CHINAMFG bearings
Energy saving:
The air compressor equiped the frequency inverter,to make the air compressor with variable speed drive [VSD].The principle of VSD is to adjust the motor rotation speed automatically according to the actual air consumption. The reduced system pressure decreases the total energy consumption of the whole system, which can reduce energy costs by 35% or more.
Technical Parameter
Model | Air pressure | Max air displacement | Motor power | transmission | dimension | Weight | Noise | Outlet | ||||||
cooling type | ||||||||||||||
mpa | bar(e) | psi(g) | m3/min | cfm | hp | kw | belt drive & air cooling |
L(mm) | W(mm) | H(mm) | Kgs | dB(A) | mm | |
GA-3.7A | 0.7 | 7 | 102 | 0.55 | 19 | 5 | 3.7 | 680 | 660 | 780 | 220 | 60±2 | 20 | |
0.8 | 8 | 116 | 0.45 | 16 | ||||||||||
1 | 10 | 145 | 0.35 | 12 | ||||||||||
GA-5.5A | 0.7 | 7 | 102 | 0.8 | 28 | 7 | 5.5 | 680 | 660 | 780 | 230 | 61±2 | 20 | |
0.8 | 8 | 116 | 0.7 | 25 | ||||||||||
1 | 10 | 145 | 0.6 | 21 | ||||||||||
1.3 | 13 | 189 | 0.5 | 18 | ||||||||||
GAS-7.5A VFC | 0.7 | 7 | 102 | 1.3 | 46 | 10 | 7.5 | 950 | 650 | 915 | 270 | 62±2 | 20 | |
0.8 | 8 | 116 | 1.2 | 42 | ||||||||||
1 | 10 | 145 | 1.1 | 39 | ||||||||||
1.3 | 13 | 189 | 0.9 | 32 | ||||||||||
GAS-11A VFC | 0.7 | 7 | 102 | 1.8 | 64 | 15 | 11 | 950 | 650 | 915 | 280 | 63±2 | 20 | |
0.8 | 8 | 116 | 1.7 | 60 | ||||||||||
1 | 10 | 145 | 1.5 | 53 | ||||||||||
1.3 | 13 | 189 | 1.2 | 42 | ||||||||||
GAS-15A VFC | 0.7 | 7 | 102 | 2.7 | 95 | 20 | 15 | 1260 | 850 | 1220 | 540 | 66±2 | 25 | |
0.8 | 8 | 116 | 2.5 | 88 | ||||||||||
1 | 10 | 145 | 2.3 | 81 | ||||||||||
1.3 | 13 | 189 | 2 | 71 | ||||||||||
GAS-18.5A VFC | 0.7 | 7 | 102 | 3.2 | 113 | 25 | 18.5 | 1260 | 850 | 1220 | 550 | 67±2 | 25 | |
0.8 | 8 | 116 | 3 | 106 | ||||||||||
1 | 10 | 145 | 2.8 | 99 | ||||||||||
1.3 | 13 | 189 | 2.4 | 85 | ||||||||||
GAS-22A VFC | 0.7 | 7 | 102 | 3.8 | 134 | 30 | 22 | 1260 | 850 | 1220 | 560 | 67±2 | 25 | |
0.8 | 8 | 116 | 3.6 | 127 | ||||||||||
1 | 10 | 145 | 3.2 | 113 | ||||||||||
1.3 | 13 | 189 | 2.8 | 99 | ||||||||||
GAS-30A VFC | 0.7 | 7 | 102 | 5.7 | 201 | 40 | 30 | 1500 | 970 | 1375 | 780 | 67±2 | 40 | |
0.8 | 8 | 116 | 5.5 | 194 | ||||||||||
1 | 10 | 145 | 5 | 177 | ||||||||||
1.3 | 13 | 189 | 4.5 | 159 | ||||||||||
GAS-37A VFC | 0.7 | 7 | 102 | 6.8 | 240 | 50 | 37 | 1500 | 970 | 1375 | 800 | 68±2 | 40 | |
0.8 | 8 | 116 | 6.31 | 222 | ||||||||||
1 | 10 | 145 | 5.7 | 201 | ||||||||||
1.3 | 13 | 189 | 5 | 177 | ||||||||||
GAS-45A VFC | 0.7 | 7 | 102 | 7.9 | 279 | 60 | 45 | 1500 | 970 | 1375 | 820 | 69±2 | 40 | |
0.8 | 8 | 116 | 7.4 | 261 | ||||||||||
1 | 10 | 145 | 6.9 | 244 | ||||||||||
1.3 | 13 | 189 | 6.1 | 215 | ||||||||||
GAS-55A VFC | 0.7 | 7 | 102 | 10.9 | 385 | 75 | 55 | direct drive &air cooling or water cooling | 2150 | 1326 | 1766 | 1550 | 69±2 | 50 |
0.8 | 8 | 116 | 10.4 | 367 | ||||||||||
1 | 10 | 145 | 9.4 | 332 | ||||||||||
1.3 | 13 | 189 | 8.6 | 304 | ||||||||||
GAS-75A VFC | 0.7 | 7 | 102 | 14.5 | 512 | 100 | 75 | 2150 | 1326 | 1766 | 1600 | 70±2 | 50 | |
0.8 | 8 | 116 | 13.8 | 487 | ||||||||||
1 | 10 | 145 | 12.6 | 445 | ||||||||||
1.3 | 13 | 189 | 11.2 | 395 | ||||||||||
GAS-90A VFC | 0.7 | 7 | 102 | 17 | 600 | 120 | 90 | 2545 | 1450 | 1900 | 2500 | 75±2 | 65 | |
0.8 | 8 | 116 | 16.5 | 583 | ||||||||||
1 | 10 | 145 | 15.2 | 537 | ||||||||||
1.3 | 13 | 189 | 14 | 494 |
*For other requirements,please contact the salesman.
Company Information
Packaging & Shipping
FAQ
Are you manufacturer?
ZIQI: Yes,we are professional air compressor manufacturer over 10 years and our factory located in ZheJiang .
How long is your air compressor warranty?
ZIQI: For 1 year.
Do you provide After- sales service parts?
ZIQI: Of course, We could provide easy- consumable spares.
How long could your air compressor be used?
ZIQI: Generally, more than 10 years.
How about your price?
ZIQI: Based on high quality, Our price is very competitive in this market all over the world.
How about your customer service?
ZIQI: For email, we could reply our customers’ emails within 2 hours.
Do you support OEM?
ZIQI: YES, and we also provide multiple models to select.
How to get quicker quotation?
When you send us inquiry, please confirm below information at the same time:
* What is the air displacement (m3/min,cfm/min)?
* What is the air pressure (mpa,bar,psi)?
* What is the voltage in your factory (v/p/Hz)?
* It is ok if you need air tank, air dryer and filters.
This information is helpful for us to check suitable equipment solution and quotation quickly.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Support |
---|---|
Warranty: | 2 Years |
Lubrication Style: | Lubricated |
Cooling System: | Air Cooling |
Power Source: | AC Power |
Cylinder Position: | Vertical |
Customization: |
Available
|
|
---|
How Do Gas Air Compressors Compare to Diesel Air Compressors?
When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:
1. Fuel Efficiency:
Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.
2. Power Output:
Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.
3. Cost:
In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.
4. Maintenance Requirements:
Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.
5. Environmental Impact:
When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.
6. Portability and Mobility:
Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.
It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.
In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.
How Do Gas Air Compressors Contribute to Energy Savings?
Gas air compressors can contribute to energy savings in several ways. Here’s a detailed explanation:
1. Efficient Power Source:
Gas air compressors are often powered by gasoline or diesel engines. Compared to electric compressors, gas-powered compressors can provide higher power output for a given size, resulting in more efficient compression of air. This efficiency can lead to energy savings, especially in applications where a significant amount of compressed air is required.
2. Reduced Electricity Consumption:
Gas air compressors, as standalone units that don’t rely on electrical power, can help reduce electricity consumption. In situations where the availability of electricity is limited or expensive, using gas air compressors can be a cost-effective alternative. By utilizing fuel-based power sources, gas air compressors can operate independently from the electrical grid and reduce dependence on electricity.
3. Demand-Sensitive Operation:
Gas air compressors can be designed to operate on demand, meaning they start and stop automatically based on the air requirements. This feature helps prevent unnecessary energy consumption during periods of low or no compressed air demand. By avoiding continuous operation, gas air compressors can optimize energy usage and contribute to energy savings.
4. Energy Recovery:
Some gas air compressors are equipped with energy recovery systems. These systems capture and utilize the heat generated during the compression process, which would otherwise be wasted. The recovered heat can be redirected and used for various purposes, such as space heating, water heating, or preheating compressed air. This energy recovery capability improves overall energy efficiency and reduces energy waste.
5. Proper Sizing and System Design:
Selecting the appropriate size and capacity of a gas air compressor is crucial for energy savings. Over-sizing a compressor can lead to excessive energy consumption, while under-sizing can result in inefficient operation and increased energy usage. Properly sizing the compressor based on the specific air demands ensures optimal efficiency and energy savings.
6. Regular Maintenance:
Maintaining gas air compressors in good working condition is essential for energy efficiency. Regular maintenance, including cleaning or replacing air filters, checking and repairing leaks, and ensuring proper lubrication, helps optimize compressor performance. Well-maintained compressors operate more efficiently, consume less energy, and contribute to energy savings.
7. System Optimization:
For larger compressed air systems that involve multiple compressors, implementing system optimization strategies can further enhance energy savings. This may include employing advanced control systems, such as variable speed drives or sequencers, to match compressed air supply with demand, minimizing unnecessary energy usage.
In summary, gas air compressors contribute to energy savings through their efficient power sources, reduced electricity consumption, demand-sensitive operation, energy recovery systems, proper sizing and system design, regular maintenance, and system optimization measures. By utilizing gas-powered compressors and implementing energy-efficient practices, businesses and industries can achieve significant energy savings in their compressed air systems.
What Are the Primary Applications of Gas Air Compressors?
Gas air compressors have a wide range of applications across various industries and activities. These compressors, powered by gas engines, provide a portable and versatile source of compressed air. Here’s a detailed explanation of the primary applications of gas air compressors:
1. Construction Industry:
Gas air compressors are extensively used in the construction industry. They power a variety of pneumatic tools and equipment, such as jackhammers, nail guns, impact wrenches, and concrete breakers. The portable nature of gas air compressors makes them ideal for construction sites where electricity may not be readily available or practical to use.
2. Agriculture and Farming:
Gas air compressors find applications in the agricultural sector. They are used to operate air-powered machinery and tools, including pneumatic seeders, sprayers, and agricultural pumps. Gas air compressors provide the necessary power to carry out tasks such as crop seeding, irrigation, and pest control in agricultural settings.
3. Recreational Activities:
Gas air compressors are commonly utilized in recreational activities. They are used to inflate tires, sports balls, inflatable structures, and recreational equipment such as air mattresses, rafts, and inflatable toys. Gas air compressors provide a convenient and portable solution for inflating various recreational items in outdoor settings.
4. Mobile Service Operations:
Gas air compressors are employed in mobile service operations, such as mobile mechanics, tire service providers, and mobile equipment repair services. These compressors power air tools and equipment required for on-site repairs, maintenance, and servicing of vehicles, machinery, and equipment. The mobility of gas air compressors allows service providers to bring their tools and compressed air source directly to the location of the service requirement.
5. Remote Job Sites:
Gas air compressors are well-suited for remote job sites or locations without access to electricity. They are commonly used in industries such as mining, oil and gas exploration, and remote construction projects. Gas air compressors power pneumatic tools, machinery, and drilling equipment in these environments, providing a reliable source of compressed air for operational needs.
6. Emergency and Backup Power:
In emergency situations or during power outages, gas air compressors can serve as a backup power source. They can power essential equipment and systems that rely on compressed air, such as emergency lighting, communication devices, medical equipment, and backup generators. Gas air compressors provide a reliable alternative power solution when electrical power is unavailable or unreliable.
7. Sandblasting and Surface Preparation:
Gas air compressors are used in sandblasting and surface preparation applications. They provide the high-pressure air necessary for propelling abrasive media, such as sand or grit, to remove paint, rust, or other coatings from surfaces. Gas air compressors offer the power and portability required for sandblasting operations in various industries, including automotive, metal fabrication, and industrial maintenance.
8. Off-Road and Outdoor Equipment:
Gas air compressors are commonly integrated into off-road and outdoor equipment, such as off-road vehicles, utility trucks, and recreational vehicles. They power air-operated systems, including air suspension systems, air brakes, air lockers, and air horns. Gas air compressors provide the necessary compressed air for reliable and efficient operation of these systems in rugged and outdoor environments.
Overall, gas air compressors have diverse applications in construction, agriculture, recreational activities, mobile service operations, remote job sites, emergency power backup, sandblasting, and various off-road and outdoor equipment. Their portability, versatility, and reliable power supply make them indispensable tools in numerous industries and activities.
editor by CX 2024-04-27
China high quality 300bar High Pressure Scuba Diving Breathing Tank Portable Air Compressor Rkh-100e for Sale mini air compressor
Product Description
Product Description
300bar High Pressure Scuba Diving Breathing Tank Portable Air Compressor RKH-100E for Sale
Model | RKH-100E |
Flow rate | 100 L/min |
Inlet pressure | atmosphere |
Outlet pressure | 200bar/3000psi |
Max working pressure | 300bar/4500psi |
Electric Motor/Petrol engine | Motor 2.2kw 3hp |
Cooling method | Air |
Oil/moisture separator | 1 after last stage |
Noise level | ≤ 73 dB(A) |
Dimension | 710*400*380mm |
Net Weight | 48kg |
Features:
30 MPa RK100 Fire Air Respirator Inflator Pump
Four-stage compression, air-cooled, piston air compressor
Equipped with high-strength nylon cooling fan
The pressure of the high-pressure safety valve is freely regulated to ensure absolute safety in use
High-tech treatment of wear-resistant CMC alloy cylinders, pistons, crankshafts and other components to ensure long-term load requirements
Assemble manual blowdown valve
The drive mode includes 380V/220V motor (explosion-proof motor), gasoline engine (for field use without power supply) for users to choose freely
Designed with a set of inflation valve, connector and inflation tube
Equipped with a shock-proof pressure gauge, the purification system is activated carbon and molecular sieve to ensure that the gas is pure, high-quality and safe.
Packaging & Shipping
Company Profile
FAQ
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of screw air compressor of HangZhou,ZheJiang ,China. More than 18 years of experience in air compressor manufacturing.
Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.
Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.
Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3.CHINAMFG agents and after service avaiable.arrange our engineers to help you training and installation.
Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.
Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.
Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.
Q8. How do you control quality ?
A: 1. The raw materials are strictly inspected
2. Some key parts are imported from overseas
3. Each compressor must pass at least 5 hours of continuous testing before leaving the factory.
Q9. Do you offer OEM service ?
A: Yes.Both OEM & ODM service can be accepted.
Q10.How long could your air compressor be used?
A: Generally, more than 10 years.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Support |
---|---|
Warranty: | 24months |
Lubrication Style: | Oil-free |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can Gas Air Compressors Be Used in Cold Weather Conditions?
Gas air compressors are generally designed to operate in a wide range of environmental conditions, including cold weather. However, there are certain considerations and precautions to keep in mind when using gas air compressors in cold weather conditions. Here’s a detailed explanation:
1. Cold Start-Up:
In cold weather, starting a gas air compressor can be more challenging due to the low temperatures affecting the engine’s performance. It is important to follow the manufacturer’s recommendations for cold start procedures, which may include preheating the engine, using a cold weather starting aid, or ensuring the proper fuel mixture. These measures help facilitate smooth start-up and prevent potential damage to the engine.
2. Fuel Type:
Consider the type of fuel used in the gas air compressor. Some fuels, such as gasoline, can be more susceptible to cold weather issues like vapor lock or fuel line freezing. In extremely cold conditions, it may be necessary to use a fuel additive or switch to a fuel type that is better suited for cold weather operation, such as winter-grade gasoline or propane.
3. Lubrication:
Cold temperatures can affect the viscosity of the oil used in the compressor’s engine. It is important to use the recommended oil grade suitable for cold weather conditions. Thicker oil can become sluggish and impede proper lubrication, while oil that is too thin may not provide adequate protection. Consult the manufacturer’s guidelines for the appropriate oil viscosity range for cold weather operation.
4. Moisture Management:
In cold weather, moisture can condense more readily in the compressed air system. It is crucial to properly drain the moisture from the compressor tank and ensure the air lines are free from any accumulated moisture. Failure to manage moisture can lead to corrosion, freezing of air lines, and decreased performance.
5. Protection from Freezing:
In extremely cold conditions, it is important to protect the gas air compressor from freezing. This may involve using insulated covers or enclosures, providing heat sources in the compressor area, or storing the compressor in a temperature-controlled environment when not in use. Taking measures to prevent freezing helps maintain proper operation and prevents potential damage to the compressor components.
6. Monitoring Performance:
Regularly monitor the performance of the gas air compressor in cold weather conditions. Pay attention to any changes in operation, such as reduced air pressure, increased noise, or difficulties in starting. Promptly address any issues and consult the manufacturer or a qualified technician if necessary.
By considering these factors and taking appropriate precautions, gas air compressors can be effectively used in cold weather conditions. However, it is important to consult the specific guidelines provided by the manufacturer for your compressor model, as they may have additional recommendations or specifications for cold weather operation.
Can Gas Air Compressors Be Used for Gas Line Maintenance?
Gas air compressors can be used for certain aspects of gas line maintenance, primarily for tasks that require compressed air. Here’s a detailed explanation:
1. Clearing Debris and Cleaning:
Gas air compressors can be utilized to clear debris and clean gas lines. Compressed air can be directed through the gas lines to dislodge and remove dirt, dust, rust particles, or other contaminants that may accumulate over time. This helps maintain the integrity and efficiency of the gas lines.
2. Pressure Testing:
Gas line maintenance often involves pressure testing to ensure the lines can withstand the required operating pressures. Gas air compressors can provide the necessary compressed air to pressurize the lines for testing purposes. By pressurizing the gas lines with compressed air, technicians can identify any leaks or weaknesses in the system.
3. Leak Detection:
Gas air compressors can also be used in conjunction with appropriate leak detection equipment to identify and locate gas leaks in the gas lines. Compressed air can be introduced into the lines, and the detection equipment can then identify any areas where the compressed air escapes, indicating a potential gas leak.
4. Valve and Equipment Maintenance:
Gas line maintenance may involve the inspection, maintenance, or replacement of valves and associated equipment. Compressed air can be used to clean and blow out debris from valves, purge lines, or assist in the disassembly and reassembly of components.
5. Pipe Drying:
Gas air compressors can aid in drying gas lines after maintenance or repairs. By blowing compressed air through the lines, any residual moisture can be removed, ensuring the gas lines are dry before being put back into service.
6. Precautions and Regulations:
When using gas air compressors for gas line maintenance, it is essential to follow safety precautions and adhere to relevant regulations. Gas line maintenance often involves working in hazardous environments, and proper training, equipment, and procedures must be followed to ensure the safety of personnel and the integrity of the gas system.
It is important to note that gas air compressors should not be used directly for pressurizing or transporting natural gas or other combustible gases. Gas line maintenance tasks involving gas air compressors primarily focus on using compressed air for specific maintenance and testing purposes, as outlined above.
In summary, gas air compressors can be useful for certain aspects of gas line maintenance, including clearing debris, pressure testing, leak detection, valve and equipment maintenance, and pipe drying. However, it is crucial to follow safety guidelines and regulations when working with gas lines and compressed air to ensure the safety and integrity of the gas system.
What Industries Commonly Use Gas Air Compressors?
Gas air compressors find applications in various industries where compressed air is required for powering tools, equipment, and systems. These compressors are valued for their portability, versatility, and ability to provide high-pressure air. Here’s a detailed explanation of the industries that commonly use gas air compressors:
1. Construction Industry:
The construction industry extensively utilizes gas air compressors for a wide range of tasks. Compressed air is used to power pneumatic tools such as jackhammers, nail guns, impact wrenches, and concrete breakers. Gas air compressors provide the necessary airflow and pressure to operate these tools efficiently, making them ideal for construction sites.
2. Mining Industry:
In the mining industry, gas air compressors play a vital role in various operations. Compressed air is used to power pneumatic tools for drilling, rock blasting, and excavation. It is also employed in ventilation systems, conveying systems, and pneumatic control devices in mines. Gas air compressors are valued for their durability and ability to operate in rugged and remote mining environments.
3. Oil and Gas Industry:
The oil and gas industry relies on gas air compressors for numerous applications. They are used for well drilling operations, powering pneumatic tools, and maintaining pressure in oil and gas pipelines. Gas air compressors are also utilized in natural gas processing plants, refineries, and petrochemical facilities for various pneumatic processes and equipment.
4. Manufacturing and Industrial Sector:
In the manufacturing and industrial sector, gas air compressors are extensively used in different applications. They provide compressed air for pneumatic tools, such as air-powered drills, sanders, grinders, and spray guns. Compressed air is also used in manufacturing processes such as material handling, assembly line operations, and pneumatic control systems.
5. Automotive Industry:
The automotive industry utilizes gas air compressors for a variety of tasks. Compressed air is employed in automotive assembly plants for pneumatic tools, paint spraying booths, and pneumatic control systems. Gas air compressors are also used in auto repair shops for powering air tools, tire inflation, and operating pneumatic lifts.
6. Agriculture and Farming:
Gas air compressors have applications in the agriculture and farming sector. They are used for tasks such as powering pneumatic tools for crop irrigation, operating pneumatic seeders or planters, and providing compressed air for farm maintenance and repair work. Portable gas air compressors are particularly useful in agricultural settings where electricity may not be readily available.
7. Food and Beverage Industry:
In the food and beverage industry, gas air compressors are employed for various pneumatic processes and equipment. They are used in food packaging operations, pneumatic conveying systems for ingredients and finished products, and air-powered mixing and blending processes. Gas air compressors in this industry are designed to meet strict hygiene and safety standards.
8. Pharmaceutical and Healthcare Sector:
The pharmaceutical and healthcare sector utilizes gas air compressors for critical applications. Compressed air is used in medical devices, dental equipment, laboratory instruments, and pharmaceutical manufacturing processes. Gas air compressors in this industry must adhere to stringent quality standards and maintain air purity.
These are just a few examples of the industries that commonly use gas air compressors. Other sectors, such as power generation, aerospace, marine, and chemical industries, also rely on gas air compressors for specific applications. The versatility and reliability of gas air compressors make them indispensable in numerous industries where compressed air is a vital resource.
editor by CX 2024-04-24
China high quality Piston Displacement Reciprocating Diaphragm Gas Booster Compressor for Psa Hydrogen Extraction Industry air compressor for sale
Product Description
Company Profile
ZheZheJiang nshine Industrial Technology Co., Ltd., as a professional overseas sales team and sales service team, is committed to providing customers with piston compressor and diaphragm compressor solutions. The company adheres to the concept of one-stop service and provides customers with a complete set of compressor equipment solutions.
Product Description
Our products mainly include 2 series: piston compressors and diaphragm compressors, covering more than 30 types of products. These products are widely used in fields such as hydrogen energy, semiconductors, chemicals, petrochemicals, and natural gas transportation. We have over 3000 industrial enterprise users, covering all aspects of the hydrogen energy industry chain, including hydrogen production, filling, and hydrogen refueling station compressors, and providing a complete set of gas compression equipment solutions. As an efficient, energy-saving, environmentally friendly, and reliable compressor type, diaphragm compressors have also achieved great success and have been widely used in various fields.
Piston compressor is a kind of piston reciprocating motion to make gas pressurization and gas delivery compressor mainly consists of working chamber, transmission parts, body and auxiliary parts. The working chamber is directly used to compress the gas, the piston is driven by the piston rod in the cylinder for reciprocating motion, the volume of the working chamber on both sides of the piston changes in turn, the volume decreases on 1 side of the gas due to the pressure increase through the valve discharge, the volume increases on 1 side due to the reduction of air pressure through the valve to absorb the gas.
Our compressors can compress ammonia, propylene, nitrogen, oxygen, helium, hydrogen, hydrogen chloride, argon, hydrogen chloride, hydrogen sulfide, hydrogen bromide, ethylene, acetylene, etc. (Nitrogen diaphragm compressor, bottle filling compressor, oxygen diaphragm compressor)
The compressor outlet pressure produced by the company can reach up to 50MPa.Our products cover the fields of food and medicine, metallurgy, electronics, textiles, clean energy, aerospace, nuclear power, petrochemicals, and other fields.
Reciprocating Gas Compressor are widely used in many industries related to the compression and supply of gas to consumers. Like oil and chemical industry, oil refineries and more. Various technological processes can include corrosive, inert, poisonous and explosive gases, which must be treated to a clean gas without impurities of oil.
Depending on the type of equipment, work with different gases, such as:
Compressor units can be made on single frame design. With interstage devices and all necessary piping, placed on a single platform with a compressor.
Compressor units can be manufactured in the version “without lubrication of cylinders and oil seals”;
The modern automation system of the compressor units guarantees the safety and easy use of the equipment.
Reducing the time of commissioning.
The machine is customized according to customer need, the specific price depends on the configuration requirements (gas composition, exhaust volume and pressure).quotation will be given according the specific parameters.
Product Parameters
Piston compressor model parameters | |||||||||
Piston force | 800 | 500 | 320 | 250 | 160 | 100 | 65 | 45 | 30 |
Types of compressed gas | Hydrogen, nitrogen, natural gas, ethylene, propylene, coal gas, hydrogen chloride, hydrogen fluoride, carbon dioxide, methyl chloride, carbon monoxide, acetylene ammonia, hydrogen monochloride, difluoromethane, tetrafluoroethylene, pentafluoroethylene, hexafluoroethylene, etc. | ||||||||
discharge pressureMPa(G) | <=25 | <=30 | |||||||
Compression levels | 1-4levels | 2-6levels | 1-3levels | ||||||
Number of columns | 2–4 | 2–6 | 1–4 | ||||||
Layout form | M/D | M/D | M/D | M/D | M/D | M/D/P | M/D/P | M/D/P | L/P |
route(mm) | 280-360 | 240-320 | 180-240 | 200 | |||||
Rotating speed(rpm) | 300-375 | 333-450 | 375-585 | 420-485 | |||||
Maximum motor power(KW) | 5600 | 3600 | 3300 | 2700 | 1250 | 800 | 560 | 250 | 75 |
skid mounted | non-skid mounted | skid mounted/non -skid mounted | |||||||
Digital Analog Computing | yes | ||||||||
systolic algorithm | yes | ||||||||
test | According to the quality standard, chemical analysis, mechanical performance, flaw detection, hydrostatic test, airtight test and other inspections are carried out for each component | ||||||||
Factory inspection | According to the quality standard, carry out no-load mechanical operation test | ||||||||
Customer acceptance | Actual working conditions, 72-hour assessment and acceptance | ||||||||
Application | Hydrogen energy, silicon, fluorine chemical industry, petrochemical industry, metallurgy, medicine, aerospace, nuclear power |
Detailed Photos
After Sales Service
In addition to the high-quality performance of our products, we also attach great importance to providing customers with comprehensive services. We have an independent service operation and maintenance team, providing customers with various support and services, including technical support, debugging services, spare parts supply, renovation and upgrading, and major maintenance. We always adhere to the principle of customer-centrism, ensuring the safe and stable operation of customer equipment. Our service team is committed to providing reliable support for customers’ operations 24/7.
Training plan
Technical training is divided into 2 parts: company training and on-site training.
1)Company training
Before the unit is delivered, that is during the unit assembly period, users will be provided with a one-week on-site training by the company. Provide local accommodation and transportation facilities, and provide free venues, teaching materials, equipment, tools, etc. required for training. The company training content is as follows:
The working principle, structure and technical performance of the unit.
Unit assembly and adjustment, unit testing.
Operation of the unit, remote/local operation, manual/automatic operation, daily operation and management, familiar with the structure of each system of the unit.
Routine maintenance and upkeep of the unit, and precautions for operation and maintenance.
Analysis and troubleshooting of common faults, and emergency handling methods.
2) On-site training
During the installation and trial operation of the unit, on-site training will be conducted to teach the principles, structure, operation, maintenance, troubleshooting of common faults and other knowledge of the unit, so as to further become familiar with the various systems of the unit, so that the purchaser can independently and correctly operate the unit. Operation, maintenance and management.
Packaging & Shipping
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 12 Month |
---|---|
Warranty: | 12 Month |
Lubrication Style: | Lubricated |
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How Do You Troubleshoot Common Issues with Gas Air Compressors?
Troubleshooting common issues with gas air compressors involves identifying and addressing potential problems that may arise during operation. Here’s a detailed explanation of the troubleshooting process:
1. Start with Safety Precautions:
Prior to troubleshooting, ensure that the gas air compressor is turned off and disconnected from the power source. Follow proper safety procedures, such as wearing appropriate personal protective equipment (PPE), to avoid accidents or injuries.
2. Check Power Supply and Connections:
Verify that the compressor is receiving power and that all electrical connections are secure. Inspect the power cord, plug, and any switches or controls to ensure they are functioning properly. If the compressor is equipped with a battery, check its charge level and connections.
3. Check Fuel Supply:
For gas air compressors that use gasoline or propane, ensure that there is an adequate fuel supply. Check the fuel tank level and verify that the fuel shut-off valve is open. If the compressor has been sitting idle for an extended period, old or stale fuel may cause starting issues. Consider draining and replacing the fuel if necessary.
4. Inspect Air Filters:
Dirty or clogged air filters can restrict airflow and affect the compressor’s performance. Check the intake air filters and clean or replace them as needed. Clogged filters can be cleaned with compressed air or washed with mild detergent and water, depending on the type of filter.
5. Check Oil Level and Quality:
If the gas air compressor has an engine with an oil reservoir, verify the oil level using the dipstick or oil level indicator. Insufficient oil can lead to engine damage or poor performance. Additionally, check the oil quality to ensure it is clean and within the recommended viscosity range. If needed, change the oil following the manufacturer’s guidelines.
6. Inspect Spark Plug:
If the gas air compressor uses a spark plug ignition system, inspect the spark plug for signs of damage or fouling. Clean or replace the spark plug if necessary, following the manufacturer’s recommendations for gap setting and torque.
7. Check Belts and Pulleys:
Inspect the belts and pulleys that drive the compressor pump. Loose or worn belts can cause slippage and affect the compressor’s performance. Tighten or replace any damaged belts, and ensure that the pulleys are properly aligned.
8. Listen for Unusual Noises:
During operation, listen for any unusual or excessive noises, such as grinding, rattling, or squealing sounds. Unusual noises could indicate mechanical issues, loose components, or improper lubrication. If identified, consult the compressor’s manual or contact a qualified technician for further inspection and repair.
9. Consult the Owner’s Manual:
If troubleshooting steps do not resolve the issue, refer to the compressor’s owner’s manual for specific troubleshooting guidance. The manual may provide additional troubleshooting steps, diagnostic charts, or recommended maintenance procedures.
10. Seek Professional Assistance:
If the issue persists or if you are unsure about performing further troubleshooting steps, it is recommended to seek assistance from a qualified technician or contact the manufacturer’s customer support for guidance.
Remember to always prioritize safety and follow proper maintenance practices to prevent issues and ensure the reliable performance of the gas air compressor.
Can Gas Air Compressors Be Used in Agriculture?
Yes, gas air compressors can be used in various agricultural applications. Here’s a detailed explanation:
1. Pneumatic Tools and Equipment:
Gas air compressors can power a wide range of pneumatic tools and equipment used in agriculture. These tools include pneumatic drills, impact wrenches, nail guns, staplers, and pneumatic pumps. Gas air compressors provide the necessary compressed air to operate these tools, making various tasks more efficient and convenient on the farm.
2. Irrigation Systems:
Gas air compressors can be used to power irrigation systems in agriculture. They can supply compressed air to operate pneumatic valves, which control the flow of water in irrigation networks. Gas air compressors ensure reliable and efficient operation of irrigation systems, facilitating the distribution of water to crops in a controlled manner.
3. Grain Handling and Storage:
Air compressors play a vital role in grain handling and storage facilities. They are used to power aeration systems that provide airflow to grains stored in silos or bins. Aeration helps control the temperature and moisture levels, preventing spoilage and maintaining grain quality. Gas air compressors provide the airflow necessary for effective aeration in grain storage operations.
4. Cleaning and Maintenance:
In agriculture, gas air compressors are commonly used for cleaning and maintenance tasks. They can power air blowers or air guns to remove dust, debris, or chaff from machinery, equipment, or storage areas. Gas air compressors provide a high-pressure stream of compressed air, facilitating efficient cleaning and maintenance operations.
5. Livestock Operations:
Gas air compressors find applications in livestock operations as well. They can power pneumatic equipment used for animal care, such as pneumatic nail guns for building or repairing livestock enclosures, pneumatic pumps for water distribution, or pneumatic tools for general maintenance tasks.
6. Portable and Versatile:
Gas air compressors are often portable and can be easily transported around the farm, allowing flexibility in agricultural operations. Their versatility makes them suitable for various tasks, from powering tools and equipment in the field to providing compressed air for maintenance or cleaning in different farm locations.
7. Remote Locations:
In agricultural settings where access to electricity may be limited, gas air compressors offer a reliable alternative. They can be powered by gasoline or diesel engines, providing compressed air even in remote areas without electrical infrastructure.
8. Considerations:
When using gas air compressors in agriculture, it is essential to consider factors such as compressor size, capacity, and maintenance requirements. Selecting the right compressor based on the specific needs of the agricultural applications ensures optimal performance and efficiency.
In summary, gas air compressors have various applications in agriculture. They can power pneumatic tools and equipment, operate irrigation systems, facilitate grain handling and storage, assist in cleaning and maintenance tasks, support livestock operations, and offer portability and versatility. Gas air compressors contribute to increased efficiency, convenience, and productivity in agricultural operations.
What Is a Gas Air Compressor?
A gas air compressor is a type of air compressor that is powered by a gas engine instead of an electric motor. It uses a combustion engine, typically fueled by gasoline or diesel, to convert fuel energy into mechanical energy, which is then used to compress air. Here’s a detailed explanation of a gas air compressor:
1. Power Source:
A gas air compressor utilizes a gas engine as its power source. The engine can be fueled by gasoline, diesel, or other types of combustible gases, such as natural gas or propane. The combustion engine drives the compressor pump to draw in air and compress it to a higher pressure.
2. Portable and Versatile:
Gas air compressors are often designed to be portable and versatile. The gas engine provides mobility, allowing the compressor to be easily transported and used in different locations, including remote job sites or areas without access to electricity. This makes gas air compressors suitable for applications such as construction projects, outdoor activities, and mobile service operations.
3. Compressor Pump:
The compressor pump in a gas air compressor is responsible for drawing in air and compressing it. The pump can be of various types, including reciprocating, rotary screw, or centrifugal, depending on the specific design of the gas air compressor. The pump’s role is to increase the pressure of the incoming air, resulting in compressed air that can be used for various applications.
4. Pressure Regulation:
Gas air compressors typically feature pressure regulation mechanisms to control the output pressure of the compressed air. This allows users to adjust the pressure according to the requirements of the specific application. The pressure regulation system may include pressure gauges, regulators, and safety valves to ensure safe and reliable operation.
5. Applications:
Gas air compressors find applications in a wide range of industries and activities. They are commonly used in construction sites for powering pneumatic tools such as jackhammers, nail guns, and impact wrenches. Gas air compressors are also utilized in agriculture for operating air-powered machinery like sprayers and pneumatic seeders. Additionally, they are employed in recreational activities such as inflating tires, sports equipment, or inflatable structures.
6. Maintenance and Fuel Considerations:
Gas air compressors require regular maintenance, including engine servicing, oil changes, and filter replacements, to ensure optimal performance and longevity. The type of fuel used in the gas engine also needs to be considered. Gasoline-powered compressors are commonly used in smaller applications, while diesel-powered compressors are preferred for heavy-duty and continuous operation due to their higher fuel efficiency and durability.
Overall, a gas air compressor is an air compressor that is powered by a gas engine, offering mobility and versatility. It provides compressed air for various applications and is commonly used in construction, agriculture, and outdoor activities. Regular maintenance and fuel considerations are essential to ensure reliable operation and optimal performance.
editor by CX 2024-02-16
China high quality VW-1.3/16-38 Piston Air Compressor Natural Gas Compressor Maintenance Provide Compressor Repair and Maintenance, Sales of Accessories Service air compressor for sale
Product Description
HangZhou United Compressor Manufacturing Co., Ltd. was established in 2002 and is a high-tech enterprise in ZheJiang Province. The company has complete production equipment testing methods, and relies on its technological advantages to introduce, absorb, and digest new technologies and processes from abroad. The products have covered all domestic demand industries and regions, and are exported to multiple countries such as Russia, Tajikistan, India, Pakistan, North Korea, etc. It is a qualified supplier and partner for many domestic and foreign enterprises.
The company has a sales and service team that continuously provides customers with various energy-saving and modern compressor system products. In the past 10 years, the company has maintained rapid and stable development, providing products and services for industries such as natural gas, steel, petroleum, chemical, coal, mining, and metallurgy. We not only have mature products, but also have a capable after-sales service team, such as conducting pre-sales inspections of compressors, timely tracking during sales, and 24-hour after-sales repair and maintenance services.
Product Application
Mainly used for pressurized transmission of natural gas into the pipeline network (Natural pipeline gas extraction and combustible gas recovery tank filling)
It can also be used for stirring in the pharmaceutical and brewing industries, pressurized gas transportation in the chemical industry, blow molding bottle making in the food industry, and dust removal of parts in the machine manufacturing industry.
Product Features
1. This series of compressors is an advanced piston compressor unit produced and manufactured using the product technology of Mannes Mandermarg Company in Germany.
2. The product has the characteristics of low noise, low vibration, compact structure, smooth operation, safety and reliability, and high automation level. It can also be configured with a data-driven remote display and control system according to customer requirements.
3. Equipped with alarm and shutdown functions for low oil pressure, low water pressure, high temperature, low inlet pressure, and high exhaust pressure of the compressor, making the operation of the compressor more reliable.
Structure Introduction
The unit consists of a compressor host, electric motor, coupling, flywheel, pipeline system, cooling system, electrical equipment, and auxiliary equipment.
Reference Technical parameters and specifications
NO. | MODEL | Compressed medium | Flow rate Nm³/h |
Inlet pressure MPa |
Outlet pressure MPa |
Rotating speed r/min |
Motor power KW |
Cooling mode | Overall dimension mm |
Weight Kg |
1 | DW-14/(0-0.2)-25 | Raw gas | 800 | 0-0.02 | 2.5 | 740 | 160 | Water cooled | 4800*3200*1915 | ~10000 |
2 | VW-8/18 | Vinylidene fluoride gas | 418 | Atmospheric pressure | 1.8 | 980 | 75 | Water cooled | 3700*2000*1700 | ~4500 |
3 | VWD-3.2/(0-0.2)-40 | Biogas | 230 | 0-0.2 | 4.0 | 740 | 45 | Water cooled | 6000*2500*2650 | ~8000 |
4 | VW-9/6 | Ethyl chloride gas | 470 | Atmospheric pressure | 0.6 | 980 | 55 | Water cooled | 2800*1720*1700 | ~3500 |
5 | DWF-12.4/(9-12)-14 | Carbon dioxide | 6400 | 0.9-1.2 | 1.4 | 740 | 185 | Air cooled | 6000*2700*2200 | ~10000 |
6 | VWF-2.86/5-16 | Nitrogen gas | 895 | 0.5 | 1.6 | 740 | 55 | Air cooled | 3200*2200*1750 | ~3500 |
7 | DW-2.4/(18-25)-50 | Raw gas | 2900 | 1.8-2.5 | 5.0 | 980 | 160 | Water cooled | 4300*3000*1540 | ~4500 |
8 | VW-5.6/(0-6)-6 | Isobutylene gas | 1650 | 0-0.6 | 0.6 | 740 | 45 | Water cooled | 2900X1900X1600 | ~3500 |
9 | VW-3.8/3.5 | Mixed gas | 200 | Atmospheric pressure | 0.35 | 980 | 18.5 | Water cooled | 2200*1945*1600 | ~2000 |
10 | ZW-1.7/3.5 | Vinyl chloride gas | 100 | Atmospheric pressure | 0.35 | 740 | 15 | Water cooled | 2700X1600X2068 | ~2000 |
11 | ZWF-0.96/5 | Hydrogen chloride gas | 55 | Atmospheric pressure | 0.5 | 740 | 11 | Air cooled | 2000*1500*2000 | ~1000 |
12 | VW-0.85/(0-14)-40 | Refrigerant gas | 300 | 0-1.4 | 4.0 | 740 | 55 | Water cooled | 4500*2300*1780 | ~5500 |
13 | DW-3.78/(8-13)-(16-24) | Ammonia gas | 2700 | 0.8-1.3 | 1.6-2.4 | 740 | 75 | Water cooled | 3200*2000*1700 | ~3500 |
Related products
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Warranty: | 12 Months |
---|---|
Lubrication Style: | Customized |
Cooling System: | Air/Water /Mixed Cooling |
Cylinder Arrangement: | Balanced Opposed Arrangement |
Cylinder Position: | Customized |
Structure Type: | Open Type |
Customization: |
Available
|
|
---|
How Do You Troubleshoot Common Issues with Gas Air Compressors?
Troubleshooting common issues with gas air compressors involves identifying and addressing potential problems that may arise during operation. Here’s a detailed explanation of the troubleshooting process:
1. Start with Safety Precautions:
Prior to troubleshooting, ensure that the gas air compressor is turned off and disconnected from the power source. Follow proper safety procedures, such as wearing appropriate personal protective equipment (PPE), to avoid accidents or injuries.
2. Check Power Supply and Connections:
Verify that the compressor is receiving power and that all electrical connections are secure. Inspect the power cord, plug, and any switches or controls to ensure they are functioning properly. If the compressor is equipped with a battery, check its charge level and connections.
3. Check Fuel Supply:
For gas air compressors that use gasoline or propane, ensure that there is an adequate fuel supply. Check the fuel tank level and verify that the fuel shut-off valve is open. If the compressor has been sitting idle for an extended period, old or stale fuel may cause starting issues. Consider draining and replacing the fuel if necessary.
4. Inspect Air Filters:
Dirty or clogged air filters can restrict airflow and affect the compressor’s performance. Check the intake air filters and clean or replace them as needed. Clogged filters can be cleaned with compressed air or washed with mild detergent and water, depending on the type of filter.
5. Check Oil Level and Quality:
If the gas air compressor has an engine with an oil reservoir, verify the oil level using the dipstick or oil level indicator. Insufficient oil can lead to engine damage or poor performance. Additionally, check the oil quality to ensure it is clean and within the recommended viscosity range. If needed, change the oil following the manufacturer’s guidelines.
6. Inspect Spark Plug:
If the gas air compressor uses a spark plug ignition system, inspect the spark plug for signs of damage or fouling. Clean or replace the spark plug if necessary, following the manufacturer’s recommendations for gap setting and torque.
7. Check Belts and Pulleys:
Inspect the belts and pulleys that drive the compressor pump. Loose or worn belts can cause slippage and affect the compressor’s performance. Tighten or replace any damaged belts, and ensure that the pulleys are properly aligned.
8. Listen for Unusual Noises:
During operation, listen for any unusual or excessive noises, such as grinding, rattling, or squealing sounds. Unusual noises could indicate mechanical issues, loose components, or improper lubrication. If identified, consult the compressor’s manual or contact a qualified technician for further inspection and repair.
9. Consult the Owner’s Manual:
If troubleshooting steps do not resolve the issue, refer to the compressor’s owner’s manual for specific troubleshooting guidance. The manual may provide additional troubleshooting steps, diagnostic charts, or recommended maintenance procedures.
10. Seek Professional Assistance:
If the issue persists or if you are unsure about performing further troubleshooting steps, it is recommended to seek assistance from a qualified technician or contact the manufacturer’s customer support for guidance.
Remember to always prioritize safety and follow proper maintenance practices to prevent issues and ensure the reliable performance of the gas air compressor.
Can Gas Air Compressors Be Used for Pneumatic Tools?
Yes, gas air compressors can be used for pneumatic tools. Here’s a detailed explanation:
1. Versatile Power Source:
Gas air compressors, powered by gasoline or diesel engines, provide a portable and versatile power source for operating pneumatic tools. They eliminate the need for electrical power supply, making them suitable for remote locations or construction sites where electricity may not be readily available.
2. High Power Output:
Gas air compressors typically offer higher power output compared to electric compressors of similar size. This high power output enables gas compressors to deliver the necessary air pressure and volume required by pneumatic tools, ensuring optimal tool performance.
3. Mobility and Portability:
Gas air compressors are often designed with mobility and portability in mind. They are compact and equipped with wheels or handles, allowing for easy transportation to different job sites. This mobility is advantageous when using pneumatic tools in various locations or when working in confined spaces.
4. Continuous Operation:
Gas air compressors can provide continuous air supply for pneumatic tools without the need for frequent pauses or recharging. As long as there is an adequate fuel supply, gas compressors can operate for extended periods, allowing uninterrupted use of pneumatic tools for tasks such as drilling, nailing, sanding, or painting.
5. Suitable for High-Demand Applications:
Pneumatic tools used in heavy-duty applications often require a robust air supply to meet their performance requirements. Gas air compressors can generate higher air flow rates and maintain higher operating pressures, making them suitable for high-demand pneumatic tools like jackhammers, impact wrenches, or sandblasters.
6. Flexibility in Compressor Size:
Gas air compressors are available in various sizes and capacities, allowing users to choose the compressor that best matches the air demands of their pneumatic tools. From small portable compressors for light-duty tasks to larger industrial-grade compressors for heavy-duty applications, there is a wide range of options to suit different tool requirements.
7. Reduced Dependency on Electrical Infrastructure:
Using gas air compressors for pneumatic tools reduces reliance on electrical infrastructure. In situations where the electrical power supply is limited, unreliable, or expensive, gas compressors offer a viable alternative, ensuring consistent tool performance without concerns about power availability.
It’s important to note that gas air compressors emit exhaust gases during operation, so proper ventilation is necessary when using them in enclosed spaces to ensure the safety of workers.
In summary, gas air compressors can effectively power pneumatic tools, offering mobility, high power output, continuous operation, and suitability for various applications. They provide a reliable and portable solution for utilizing pneumatic tools in locations where electrical power supply may be limited or unavailable.
What Is a Gas Air Compressor?
A gas air compressor is a type of air compressor that is powered by a gas engine instead of an electric motor. It uses a combustion engine, typically fueled by gasoline or diesel, to convert fuel energy into mechanical energy, which is then used to compress air. Here’s a detailed explanation of a gas air compressor:
1. Power Source:
A gas air compressor utilizes a gas engine as its power source. The engine can be fueled by gasoline, diesel, or other types of combustible gases, such as natural gas or propane. The combustion engine drives the compressor pump to draw in air and compress it to a higher pressure.
2. Portable and Versatile:
Gas air compressors are often designed to be portable and versatile. The gas engine provides mobility, allowing the compressor to be easily transported and used in different locations, including remote job sites or areas without access to electricity. This makes gas air compressors suitable for applications such as construction projects, outdoor activities, and mobile service operations.
3. Compressor Pump:
The compressor pump in a gas air compressor is responsible for drawing in air and compressing it. The pump can be of various types, including reciprocating, rotary screw, or centrifugal, depending on the specific design of the gas air compressor. The pump’s role is to increase the pressure of the incoming air, resulting in compressed air that can be used for various applications.
4. Pressure Regulation:
Gas air compressors typically feature pressure regulation mechanisms to control the output pressure of the compressed air. This allows users to adjust the pressure according to the requirements of the specific application. The pressure regulation system may include pressure gauges, regulators, and safety valves to ensure safe and reliable operation.
5. Applications:
Gas air compressors find applications in a wide range of industries and activities. They are commonly used in construction sites for powering pneumatic tools such as jackhammers, nail guns, and impact wrenches. Gas air compressors are also utilized in agriculture for operating air-powered machinery like sprayers and pneumatic seeders. Additionally, they are employed in recreational activities such as inflating tires, sports equipment, or inflatable structures.
6. Maintenance and Fuel Considerations:
Gas air compressors require regular maintenance, including engine servicing, oil changes, and filter replacements, to ensure optimal performance and longevity. The type of fuel used in the gas engine also needs to be considered. Gasoline-powered compressors are commonly used in smaller applications, while diesel-powered compressors are preferred for heavy-duty and continuous operation due to their higher fuel efficiency and durability.
Overall, a gas air compressor is an air compressor that is powered by a gas engine, offering mobility and versatility. It provides compressed air for various applications and is commonly used in construction, agriculture, and outdoor activities. Regular maintenance and fuel considerations are essential to ensure reliable operation and optimal performance.
editor by CX 2024-02-01
China best Air Compressor Piston Typ Oil-Free Ring Controller Head Electric High Pressure Oilless Small Portable Gas Online Hose Reel Sale Machine Transmission Compressor air compressor for car
Product Description
Piston Air Compressor type oil-free ring controller head electric high pressure oilless small portable gas online hose reel sale machine transmission auto parts
1. Power:(KW) 3. 0
2. Max Power: (KW) 3.2
3. Power factor: 0.81
4. Voltage:380
5. Rated current: (A)5.5
6. Max current: (A) 6.1
7. Frequency: (Hz) 50
8. Speed: (r/min) 1440
9. Pole:4
10. Efficiency: 80%
11. Insulation grade: F
12. Working form: S1
13. Levels of protection: IP67
Air compressor parameters:
1. Discharge volume: 500L/min
2. Work efficiency: 338 l.min- 1/ 5 bar
3. Working pressure: 10bar
4. Compressed gas: Air
5. Oil free in the air
6. No need oil
7. Maximum exhaust temperature:
8. Safety valve opening pressure: 10.5bar
9. Overtemperature Protection of Equipment: Temperature protector
Assembly parameters:
1. Starting mode: Direct startup(Frequency Converter Performs 2-3S Soft Start and Soft Stop)
2. Cooling mode: Air cooling
3. Noise: <79db(A)
4. Permissible working environment temperature: -50-75 degree
5. Structure: Direct Portable Oilless Piston Air Compressor
6. Connection length: According to customers requirement
7. Installation space requirements: 590×470×440mm
8. Net weight: 48Kg
9. Exhaust port standard: G1/2(outside screw thread)or can OME according to customer’s requirement
10. High Voltage Connection Plug: YD28K4TSJ
11. Low Voltage Connection Plug: YD18K4TS
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Lubrication Style: | Oil-free |
---|---|
Power: | (Kw) 3. 0 |
Power Factor: | 0.81 |
Voltage: | 380 |
Rated Current: | (a) 5.5 |
Frequency: | (Hz) 50 |
Samples: |
US$ 999/Piece
1 Piece(Min.Order) | |
---|
How Do Gas Air Compressors Compare to Diesel Air Compressors?
When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:
1. Fuel Efficiency:
Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.
2. Power Output:
Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.
3. Cost:
In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.
4. Maintenance Requirements:
Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.
5. Environmental Impact:
When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.
6. Portability and Mobility:
Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.
It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.
In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.
How Do You Transport Gas Air Compressors to Different Job Sites?
Transporting gas air compressors to different job sites requires careful planning and consideration of various factors. Here’s a detailed explanation:
1. Equipment Size and Weight:
The size and weight of the gas air compressor are crucial factors to consider when planning transportation. Gas air compressors come in different sizes and configurations, ranging from portable units to larger, skid-mounted or trailer-mounted compressors. Assess the dimensions and weight of the compressor to determine the appropriate transportation method.
2. Transportation Modes:
Gas air compressors can be transported using different modes of transportation, depending on their size, weight, and distance to the job site:
- Truck or Trailer: Smaller gas air compressors can be loaded onto a truck bed or trailer for transportation. Ensure that the vehicle or trailer has the necessary capacity to accommodate the weight and dimensions of the compressor.
- Flatbed or Lowboy Trailer: Larger gas compressors or skid-mounted units may require transportation on a flatbed or lowboy trailer. These trailers are designed to carry heavy equipment and provide stability during transportation.
- Shipping Container: For long-distance transportation or international shipments, gas air compressors can be transported in shipping containers. The compressor must be properly secured and protected within the container to prevent any damage during transit.
3. Securing and Protection:
It is essential to secure the gas air compressor properly during transportation to prevent shifting or damage. Use appropriate tie-down straps, chains, or fasteners to secure the compressor to the transport vehicle or trailer. Protect the compressor from potential impacts, vibrations, and weather conditions by using suitable covers, padding, or weatherproof enclosures.
4. Permits and Regulations:
Depending on the size and weight of the gas air compressor, special permits or escorts may be required for transportation. Familiarize yourself with local, state, and federal regulations regarding oversize or overweight loads, and obtain the necessary permits to ensure compliance with transportation laws.
5. Route Planning:
Plan the transportation route carefully, considering factors such as road conditions, height and weight restrictions, bridges, tunnels, and any other potential obstacles. Identify alternative routes if needed, and communicate with transportation authorities or agencies to ensure a smooth and safe journey.
6. Equipment Inspection and Maintenance:
Prior to transportation, conduct a thorough inspection of the gas air compressor to ensure it is in proper working condition. Check for any leaks, damage, or loose components. Perform routine maintenance tasks, such as oil changes, filter replacements, and belt inspections, to minimize the risk of equipment failure during transportation.
In summary, transporting gas air compressors to different job sites requires considering factors such as equipment size and weight, choosing appropriate transportation modes, securing and protecting the compressor, obtaining necessary permits, planning the route, and conducting equipment inspection and maintenance. Careful planning and adherence to transportation regulations contribute to the safe and efficient transportation of gas air compressors.
What Are the Primary Applications of Gas Air Compressors?
Gas air compressors have a wide range of applications across various industries and activities. These compressors, powered by gas engines, provide a portable and versatile source of compressed air. Here’s a detailed explanation of the primary applications of gas air compressors:
1. Construction Industry:
Gas air compressors are extensively used in the construction industry. They power a variety of pneumatic tools and equipment, such as jackhammers, nail guns, impact wrenches, and concrete breakers. The portable nature of gas air compressors makes them ideal for construction sites where electricity may not be readily available or practical to use.
2. Agriculture and Farming:
Gas air compressors find applications in the agricultural sector. They are used to operate air-powered machinery and tools, including pneumatic seeders, sprayers, and agricultural pumps. Gas air compressors provide the necessary power to carry out tasks such as crop seeding, irrigation, and pest control in agricultural settings.
3. Recreational Activities:
Gas air compressors are commonly utilized in recreational activities. They are used to inflate tires, sports balls, inflatable structures, and recreational equipment such as air mattresses, rafts, and inflatable toys. Gas air compressors provide a convenient and portable solution for inflating various recreational items in outdoor settings.
4. Mobile Service Operations:
Gas air compressors are employed in mobile service operations, such as mobile mechanics, tire service providers, and mobile equipment repair services. These compressors power air tools and equipment required for on-site repairs, maintenance, and servicing of vehicles, machinery, and equipment. The mobility of gas air compressors allows service providers to bring their tools and compressed air source directly to the location of the service requirement.
5. Remote Job Sites:
Gas air compressors are well-suited for remote job sites or locations without access to electricity. They are commonly used in industries such as mining, oil and gas exploration, and remote construction projects. Gas air compressors power pneumatic tools, machinery, and drilling equipment in these environments, providing a reliable source of compressed air for operational needs.
6. Emergency and Backup Power:
In emergency situations or during power outages, gas air compressors can serve as a backup power source. They can power essential equipment and systems that rely on compressed air, such as emergency lighting, communication devices, medical equipment, and backup generators. Gas air compressors provide a reliable alternative power solution when electrical power is unavailable or unreliable.
7. Sandblasting and Surface Preparation:
Gas air compressors are used in sandblasting and surface preparation applications. They provide the high-pressure air necessary for propelling abrasive media, such as sand or grit, to remove paint, rust, or other coatings from surfaces. Gas air compressors offer the power and portability required for sandblasting operations in various industries, including automotive, metal fabrication, and industrial maintenance.
8. Off-Road and Outdoor Equipment:
Gas air compressors are commonly integrated into off-road and outdoor equipment, such as off-road vehicles, utility trucks, and recreational vehicles. They power air-operated systems, including air suspension systems, air brakes, air lockers, and air horns. Gas air compressors provide the necessary compressed air for reliable and efficient operation of these systems in rugged and outdoor environments.
Overall, gas air compressors have diverse applications in construction, agriculture, recreational activities, mobile service operations, remote job sites, emergency power backup, sandblasting, and various off-road and outdoor equipment. Their portability, versatility, and reliable power supply make them indispensable tools in numerous industries and activities.
editor by CX 2024-01-12
China manufacturer High Pressure Freon Compressor Carbon Dioxide Compressor (ZW-9/4-30CE Approval) air compressor for sale
Product Description
Product Name | Oil-Free Booster Compressor |
Model No | BW-3/5/10/15/20/30… |
Inlet Pressure | 0.4Mpa( G ) |
Exhaust Pressure | 150/200Mpa( G ) |
Type | High Pressure Oil Free |
Accessories | Filling Manifold, Piston ring, Etc |
Oilless High Pressure O2 Compressor Specification | |||||
NO | Volume | Inlet pressure | Outlet pressure | Type | Cooling type |
1 | 1-3m³ | 0.3-0.4MPa | 15MPa | 2 lines 4 stages vertical type | Wind |
2 | 4-12m³ | 0.3-0.4MPa | 15MPa | 2 lines 4 stages vertical type | Wind |
3 | 13-40m³ | 0.3-0.4MPa | 15MPa | 3 lines 3 stages W type | Water |
4 | 13-60m³ | 0.2-0.4MPa | 15MPa | 2 lines 4 stages vertical type | Water |
5 | 40-80m³ | 0.2-0.4MPa | 15MPa | 4 lines 4 stages S type | Water |
6 | 80-120m³ | 0.2-0.4MPa | 15MPa | 4 lines 4 stages S type | Water |
If you have compressor inquiry please tell us follows information when you send inquiry:
*Compressor working medium: If single gas ,how many purity ? if mixed gas , what’s gas content lit ?
*Suction pressure(gauge pressure):_____bar
*Exhaust pressure(gauge pressure):_____bar
*Flow rate per hour for compressor: _____Nm³/h
Compressor gas suction temperature:_____ºC
Compressor working hours per day :_____hours
Compressor working site altitude :_____m
Environment temperature : _____ºC
Has cooling water in the site or not ?______
Voltage and frequency for 3 phase :____________
Do not has water vapor or H2S in the gas ?______
Application for compressor?__________
After-sales Service: | 1 Year |
---|---|
Warranty: | 1 Year |
Product Name: | Oxygen,Nitrogen Compressor |
Gas Type: | Oxygen,Nitrogen,Special Gas |
Cooling Method: | Air Cooling Water Cooling |
Application: | Filling Cylinder |
Customization: |
Available
|
|
---|
What Is the Typical Lifespan of a Gas Air Compressor?
The typical lifespan of a gas air compressor can vary depending on several factors, including the quality of the compressor, its usage patterns, maintenance practices, and environmental conditions. However, with proper care and maintenance, a gas air compressor can last for many years. Here’s a detailed explanation of the factors that can affect the lifespan of a gas air compressor:
1. Quality of the Compressor:
The quality and construction of the gas air compressor play a significant role in determining its lifespan. Compressors made with high-quality materials, precision engineering, and robust components are generally more durable and can withstand heavy usage over an extended period.
2. Usage Patterns:
The usage patterns of the gas air compressor can impact its lifespan. If the compressor is used consistently and for extended periods, it may experience more wear and tear compared to compressors used intermittently or for lighter tasks. Heavy-duty applications, such as continuous operation with high-demand tools, can put more strain on the compressor and potentially reduce its lifespan.
3. Maintenance Practices:
Regular maintenance is crucial for extending the lifespan of a gas air compressor. Following the manufacturer’s recommended maintenance schedule, performing routine tasks like oil changes, filter cleaning/replacement, and inspection of components can help prevent issues and ensure optimal performance. Neglecting maintenance can lead to accelerated wear and potential breakdowns.
4. Environmental Conditions:
The operating environment can significantly impact the lifespan of a gas air compressor. Factors such as temperature extremes, humidity levels, presence of dust or debris, and exposure to corrosive substances can affect the compressor’s components and overall performance. Compressors used in harsh environments may require additional protection or specialized maintenance to mitigate these adverse conditions.
5. Proper Installation and Operation:
Proper installation and correct operation of the gas air compressor are essential for its longevity. Following the manufacturer’s guidelines for installation, ensuring proper ventilation, maintaining correct oil levels, and operating within the compressor’s specified capacity and pressure limits can help prevent excessive strain and premature wear.
Considering these factors, a well-maintained gas air compressor can typically last anywhere from 10 to 15 years or even longer. However, it’s important to note that this is a general estimate, and individual results may vary. Some compressors may experience shorter lifespans due to heavy usage, inadequate maintenance, or other factors, while others may last well beyond the expected lifespan with proper care and favorable conditions.
Ultimately, investing in a high-quality gas air compressor, adhering to recommended maintenance practices, and using it within its intended capabilities can help maximize its lifespan and ensure reliable performance for an extended period.
How Do You Transport Gas Air Compressors to Different Job Sites?
Transporting gas air compressors to different job sites requires careful planning and consideration of various factors. Here’s a detailed explanation:
1. Equipment Size and Weight:
The size and weight of the gas air compressor are crucial factors to consider when planning transportation. Gas air compressors come in different sizes and configurations, ranging from portable units to larger, skid-mounted or trailer-mounted compressors. Assess the dimensions and weight of the compressor to determine the appropriate transportation method.
2. Transportation Modes:
Gas air compressors can be transported using different modes of transportation, depending on their size, weight, and distance to the job site:
- Truck or Trailer: Smaller gas air compressors can be loaded onto a truck bed or trailer for transportation. Ensure that the vehicle or trailer has the necessary capacity to accommodate the weight and dimensions of the compressor.
- Flatbed or Lowboy Trailer: Larger gas compressors or skid-mounted units may require transportation on a flatbed or lowboy trailer. These trailers are designed to carry heavy equipment and provide stability during transportation.
- Shipping Container: For long-distance transportation or international shipments, gas air compressors can be transported in shipping containers. The compressor must be properly secured and protected within the container to prevent any damage during transit.
3. Securing and Protection:
It is essential to secure the gas air compressor properly during transportation to prevent shifting or damage. Use appropriate tie-down straps, chains, or fasteners to secure the compressor to the transport vehicle or trailer. Protect the compressor from potential impacts, vibrations, and weather conditions by using suitable covers, padding, or weatherproof enclosures.
4. Permits and Regulations:
Depending on the size and weight of the gas air compressor, special permits or escorts may be required for transportation. Familiarize yourself with local, state, and federal regulations regarding oversize or overweight loads, and obtain the necessary permits to ensure compliance with transportation laws.
5. Route Planning:
Plan the transportation route carefully, considering factors such as road conditions, height and weight restrictions, bridges, tunnels, and any other potential obstacles. Identify alternative routes if needed, and communicate with transportation authorities or agencies to ensure a smooth and safe journey.
6. Equipment Inspection and Maintenance:
Prior to transportation, conduct a thorough inspection of the gas air compressor to ensure it is in proper working condition. Check for any leaks, damage, or loose components. Perform routine maintenance tasks, such as oil changes, filter replacements, and belt inspections, to minimize the risk of equipment failure during transportation.
In summary, transporting gas air compressors to different job sites requires considering factors such as equipment size and weight, choosing appropriate transportation modes, securing and protecting the compressor, obtaining necessary permits, planning the route, and conducting equipment inspection and maintenance. Careful planning and adherence to transportation regulations contribute to the safe and efficient transportation of gas air compressors.
How Does a Gas Air Compressor Work?
A gas air compressor works by utilizing a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air can then be used for various applications. Here’s a detailed explanation of how a gas air compressor operates:
1. Gas Engine:
A gas air compressor is equipped with a gas engine as its power source. The gas engine is typically fueled by gasoline, diesel, natural gas, or propane. When the engine is started, the fuel is combusted within the engine’s cylinders, generating mechanical energy in the form of rotational motion.
2. Compressor Pump:
The gas engine drives the compressor pump through a mechanical linkage, such as a belt or direct coupling. The compressor pump is responsible for drawing in atmospheric air and compressing it to a higher pressure. There are different types of compressor pumps used in gas air compressors, including reciprocating, rotary screw, or centrifugal, each with its own operating principles.
3. Intake Stroke:
In a reciprocating compressor pump, the intake stroke begins when the piston moves downward within the cylinder. This creates a vacuum, causing the inlet valve to open and atmospheric air to be drawn into the cylinder. In rotary screw or centrifugal compressors, air is continuously drawn in through the intake port as the compressor operates.
4. Compression Stroke:
During the compression stroke in a reciprocating compressor, the piston moves upward, reducing the volume within the cylinder. This compression action causes the air to be compressed and its pressure to increase. In rotary screw compressors, two interlocking screws rotate, trapping and compressing the air between them. In centrifugal compressors, air is accelerated and compressed by high-speed rotating impellers.
5. Discharge Stroke:
Once the air is compressed, the discharge stroke begins in reciprocating compressors. The piston moves upward, further reducing the volume and forcing the compressed air out of the cylinder through the discharge valve. In rotary screw compressors, the compressed air is discharged through an outlet port as the interlocking screws continue to rotate. In centrifugal compressors, the high-pressure air is discharged from the impeller into the surrounding volute casing.
6. Pressure Regulation:
Gas air compressors often include pressure regulation mechanisms to control the output pressure of the compressed air. This can be achieved through pressure switches, regulators, or control systems that adjust the compressor’s operation based on the desired pressure setting. These mechanisms help maintain a consistent and controlled supply of compressed air for the specific application requirements.
7. Storage and Application:
The compressed air produced by the gas air compressor is typically stored in a receiver tank or used directly for applications. The receiver tank helps stabilize the pressure and provides a reservoir of compressed air for immediate use. From the receiver tank, the compressed air can be distributed through pipelines to pneumatic tools, machinery, or other devices that require the compressed air for operation.
Overall, a gas air compressor operates by using a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air is then regulated and used for various applications, providing a reliable source of power for pneumatic tools, machinery, and other equipment.
editor by CX 2023-11-10
China Good quality Oilless Oxygen Air Compressor Oilless Oxygen Gas Compressor Oilless Oxygen Compressor for Sale wholesaler
Product Description
OFAC oil-free screw air compressor used Japanese Mitsui’s original technology, who is the only maintenance service provider in China.
TECHNICAL DATA |
||||||||||
Model | Power | Pressure (bar) | Air Flow (m3/min) | Noise Level dBA | Outlet Size | Weight (kgs) | Lubricating Water(L) | Filter Element (B)-(Z) | Dimension LxWxH (mm) | |
OF-7.5F | 7.5kw | 10hp | 8 | 1.0 | 60 | RP 3/4 | 400 | 22 | (25cm) 1 | 1000*720*1050 |
OF-11F | 11kw | 15hp | 8 | 1.6 | 63 | 460 | 1156*845*1250 | |||
OF-15F | 15kw | 20hp | 8 | 2.5 | 65 | RP 1 | 620 | 28 | (50cm) 1 | 1306*945*1260 |
OF-18F | 18.5kw | 25hp | 8 | 3.0 | 67 | 750 | 33 | 1520*1060*1390 | ||
OF-22F | 22kw | 30hp | 8 | 3.6 | 68 | 840 | 33 | 1520*1060*1390 | ||
OF-30F | 30kw | 40hp | 8 | 5.0 | 69 | RP 11/4 | 1050 | 66 | (25cm) 5 | 1760*1160*1490 |
OF-37F | 37kw | 50hp | 8 | 6.2 | 71 | 1100 | 1760*1160*1490 | |||
OF-45S | 45kw | 60hp | 8 | 7.3 | 74 | RP 11/2 | 1050 | 88 | 1760*1160*1490 | |
OF-45F | 45kw | 60hp | 8 | 7.3 | 74 | 1200 | 1760*1160*1490 | |||
OF-55S | 55kw | 75hp | 8 | 10 | 74 | RP 2 | 1250 | 110 | (50cm) 5 | 1900*1250*1361 |
OF-55F | 55kw | 75hp | 8 | 10 | 74 | 2200 | (50cm) 7 | 2350*1250*1880 | ||
OF-75S | 75kw | 100hp | 8 | 13 | 75 | 1650 | (50cm) 5 | 1900*1250*1361 | ||
OF-75F | 75kw | 100hp | 8 | 13 | 75 | 2500 | (50cm) 7 | 2550*1620*1880 | ||
OF-90S | 90kw | 125hp | 8 | 15 | 76 | 2050 | (50cm) 5 | 1900*1250*1361 | ||
OF-90F | 90kw | 125hp | 8 | 15 | 76 | 2650 | (50cm) 7 | 2550*1620*1880 | ||
OF-110S | 110kw | 150hp | 8 | 20 | 78 | DN 65 | 2550 | 130 | (50cm) 12 | 2200*1600*1735 |
OF-110F | 110kw | 150hp | 8 | 20 | 78 | 3500 | 130 | 3000*1700*2250 | ||
OF-132S | 132kw | 175hp | 8 | 23 | 80 | 2700 | 130 | 2200*1600*2250 | ||
OF-160S | 160kw | 220hp | 8 | 26 | 82 | 2900 | 165 | 2200*1600*2250 | ||
OF-185S | 185kw | 250hp | 8 | 30 | 83 | DN 100 | 3300 | 180 | (50cm) 22 | 2860*1800*1945 |
OF-200S | 200kw | 270hp | 8 | 33 | 83 | 3500 | 2860*1800*1945 | |||
OF-220S | 220kw | 300hp | 8 | 36 | 85 | 4500 | 2860*2000*2300 | |||
OF-250S | 250kw | 340hp | 8 | 40 | 85 | 4700 | 2860*2000*2300 | |||
OF-315S | 315kw | 480hp | 8 | 50 | 90 | 5000 | 2860*2000*2300 |
F– air cooling method S– water cooling method
The brand “OFAC, OFC” specializes in the R&D, manufacturing, sales and service of compressors, oil-free compressors and air end, special gas compressors, various air compressors and post-processing equipment, providing customers with High-quality, environmentally friendly and efficient air system solutions and fast and stable technical services.
FAQ
Q1: Warranty terms of your machine?
A1: Two year warranty for the machine and technical support according to your needs.
Q2: Will you provide some spare parts of the machines?
A2: Yes, of course.
Q3: What about product package?
A3: We pack our products strictly with standard seaworthy case. Rcommend wooden box.
Q4: Can you use our brand?
A4: Yes, OEM is available.
Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products. 380V 50HZ we can delivery the goods within 3-15 days. Other voltage or other color we will delivery within 30-45 days.
Q6: How Many Staff Are There In your Factory?
A6: About 100.
Q7: What’s your factory’s production capacity?
A7: About 550-650 units per month.
Q8: What the exactly address of your factory?
A8: Our first workshop located in HangZhou, ZheJiang , second workshop located in HangZhou, ZheJiang , China.
After-sales Service: | 2 Years |
---|---|
Warranty: | 2 Years |
Lubrication Style: | Oil-free |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can Gas Air Compressors Be Used for High-Pressure Applications?
Gas air compressors can be used for high-pressure applications, but there are certain considerations to keep in mind. Here’s a detailed explanation:
Gas air compressors are available in various sizes and configurations, and their suitability for high-pressure applications depends on factors such as the compressor’s design, power output, and the specific requirements of the application. Here are some key points to consider:
1. Compressor Design:
Not all gas air compressors are designed to handle high-pressure applications. Some compressors are specifically built for low-to-medium pressure ranges, while others are designed to deliver higher pressure outputs. It is important to select a gas air compressor model that is rated for the desired pressure range. The compressor’s specifications and manufacturer’s guidelines will provide information on the maximum pressure it can generate.
2. Power Output:
The power output of a gas air compressor is a crucial factor in determining its suitability for high-pressure applications. High-pressure compressors require more power to achieve and sustain the desired pressure levels. It is important to ensure that the gas air compressor has sufficient power output to meet the demands of the specific high-pressure application.
3. Cylinder Configuration:
The cylinder configuration of the gas air compressor can also affect its ability to handle high-pressure applications. Compressors with multiple cylinders or stages are designed to generate higher pressures compared to compressors with a single cylinder. Multi-stage compressors compress the air in multiple steps, allowing for higher pressure ratios.
4. Safety Considerations:
High-pressure applications require careful attention to safety considerations. Gas air compressors used for high-pressure applications should be equipped with appropriate safety features such as pressure relief valves, pressure gauges, and safety shut-off systems. It is crucial to follow all safety guidelines and regulations to ensure safe operation.
5. Maintenance and Inspection:
Regular maintenance and inspection are essential for gas air compressors used in high-pressure applications. High-pressure operation can put additional stress on the compressor components, and proper maintenance helps ensure optimal performance and safety. Regular inspections and adherence to maintenance schedules will help identify and address any potential issues before they become major problems.
6. Application-specific Considerations:
Each high-pressure application may have specific requirements and considerations. It is important to evaluate factors such as the required pressure level, duty cycle, flow rate, and any specific environmental conditions that may impact the performance of the gas air compressor. Consulting with the compressor manufacturer or a qualified professional can help determine the suitability of a gas air compressor for a particular high-pressure application.
In summary, gas air compressors can be used for high-pressure applications, provided that they are designed, rated, and configured appropriately. It is essential to consider factors such as compressor design, power output, safety features, maintenance requirements, and application-specific considerations to ensure safe and reliable operation at high pressures.
How Do Gas Air Compressors Contribute to Energy Savings?
Gas air compressors can contribute to energy savings in several ways. Here’s a detailed explanation:
1. Efficient Power Source:
Gas air compressors are often powered by gasoline or diesel engines. Compared to electric compressors, gas-powered compressors can provide higher power output for a given size, resulting in more efficient compression of air. This efficiency can lead to energy savings, especially in applications where a significant amount of compressed air is required.
2. Reduced Electricity Consumption:
Gas air compressors, as standalone units that don’t rely on electrical power, can help reduce electricity consumption. In situations where the availability of electricity is limited or expensive, using gas air compressors can be a cost-effective alternative. By utilizing fuel-based power sources, gas air compressors can operate independently from the electrical grid and reduce dependence on electricity.
3. Demand-Sensitive Operation:
Gas air compressors can be designed to operate on demand, meaning they start and stop automatically based on the air requirements. This feature helps prevent unnecessary energy consumption during periods of low or no compressed air demand. By avoiding continuous operation, gas air compressors can optimize energy usage and contribute to energy savings.
4. Energy Recovery:
Some gas air compressors are equipped with energy recovery systems. These systems capture and utilize the heat generated during the compression process, which would otherwise be wasted. The recovered heat can be redirected and used for various purposes, such as space heating, water heating, or preheating compressed air. This energy recovery capability improves overall energy efficiency and reduces energy waste.
5. Proper Sizing and System Design:
Selecting the appropriate size and capacity of a gas air compressor is crucial for energy savings. Over-sizing a compressor can lead to excessive energy consumption, while under-sizing can result in inefficient operation and increased energy usage. Properly sizing the compressor based on the specific air demands ensures optimal efficiency and energy savings.
6. Regular Maintenance:
Maintaining gas air compressors in good working condition is essential for energy efficiency. Regular maintenance, including cleaning or replacing air filters, checking and repairing leaks, and ensuring proper lubrication, helps optimize compressor performance. Well-maintained compressors operate more efficiently, consume less energy, and contribute to energy savings.
7. System Optimization:
For larger compressed air systems that involve multiple compressors, implementing system optimization strategies can further enhance energy savings. This may include employing advanced control systems, such as variable speed drives or sequencers, to match compressed air supply with demand, minimizing unnecessary energy usage.
In summary, gas air compressors contribute to energy savings through their efficient power sources, reduced electricity consumption, demand-sensitive operation, energy recovery systems, proper sizing and system design, regular maintenance, and system optimization measures. By utilizing gas-powered compressors and implementing energy-efficient practices, businesses and industries can achieve significant energy savings in their compressed air systems.
Are There Different Types of Gas Air Compressors Available?
Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:
1. Reciprocating Gas Air Compressors:
Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.
2. Rotary Screw Gas Air Compressors:
Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.
3. Rotary Vane Gas Air Compressors:
Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.
4. Centrifugal Gas Air Compressors:
Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.
5. Oil-Free Gas Air Compressors:
Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.
6. Portable Gas Air Compressors:
Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.
7. High-Pressure Gas Air Compressors:
High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.
8. Biogas Air Compressors:
Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.
These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.
editor by CX 2023-10-19