Product Description
Product Application
Mainly used for pressurized transmission of natural gas into the pipeline network (Natural pipeline gas extraction and combustible gas recovery tank filling)
It can also be used for stirring in the pharmaceutical and brewing industries, pressurized gas transportation in the chemical industry, blow molding bottle making in the food industry, and dust removal of parts in the machine manufacturing industry.
Product Features
1. This series of compressors is an advanced piston compressor unit produced and manufactured using the product technology of Mannes Mandermarg Company in Germany.
2. The product has the characteristics of low noise, low vibration, compact structure, smooth operation, safety and reliability, and high automation level. It can also be configured with a data-driven remote display and control system according to customer requirements.
3. Equipped with alarm and shutdown functions for low oil pressure, low water pressure, high temperature, low inlet pressure, and high exhaust pressure of the compressor, making the operation of the compressor more reliable.
Structure Introduction
The unit consists of a compressor host, electric motor, coupling, flywheel, pipeline system, cooling system, electrical equipment, and auxiliary equipment.
1.Adopting advanced technology both domestically and internationally, the machine has low noise, low loss, low vibration, and long service life
2.Used in fields such as metallurgy, national defense, petrochemicals, coal chemical industry, liquefied natural gas, carbon dioxide treatment, etc
3.Compressed media include oxygen, nitrogen, carbon dioxide, hydrogen, natural gas, various raw materials and refrigerants, etc
4.High reliability, durability, and meeting the various working conditions required for all process
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Warranty: | 12 Months |
---|---|
Lubrication Style: | Customized |
Cooling System: | Air/Water /Mixed Cooling |
Cylinder Arrangement: | Balanced Opposed Arrangement |
Cylinder Position: | Customized |
Structure Type: | Open Type |
Customization: |
Available
|
|
---|
Can Gas Air Compressors Be Used in Cold Weather Conditions?
Gas air compressors are generally designed to operate in a wide range of environmental conditions, including cold weather. However, there are certain considerations and precautions to keep in mind when using gas air compressors in cold weather conditions. Here’s a detailed explanation:
1. Cold Start-Up:
In cold weather, starting a gas air compressor can be more challenging due to the low temperatures affecting the engine’s performance. It is important to follow the manufacturer’s recommendations for cold start procedures, which may include preheating the engine, using a cold weather starting aid, or ensuring the proper fuel mixture. These measures help facilitate smooth start-up and prevent potential damage to the engine.
2. Fuel Type:
Consider the type of fuel used in the gas air compressor. Some fuels, such as gasoline, can be more susceptible to cold weather issues like vapor lock or fuel line freezing. In extremely cold conditions, it may be necessary to use a fuel additive or switch to a fuel type that is better suited for cold weather operation, such as winter-grade gasoline or propane.
3. Lubrication:
Cold temperatures can affect the viscosity of the oil used in the compressor’s engine. It is important to use the recommended oil grade suitable for cold weather conditions. Thicker oil can become sluggish and impede proper lubrication, while oil that is too thin may not provide adequate protection. Consult the manufacturer’s guidelines for the appropriate oil viscosity range for cold weather operation.
4. Moisture Management:
In cold weather, moisture can condense more readily in the compressed air system. It is crucial to properly drain the moisture from the compressor tank and ensure the air lines are free from any accumulated moisture. Failure to manage moisture can lead to corrosion, freezing of air lines, and decreased performance.
5. Protection from Freezing:
In extremely cold conditions, it is important to protect the gas air compressor from freezing. This may involve using insulated covers or enclosures, providing heat sources in the compressor area, or storing the compressor in a temperature-controlled environment when not in use. Taking measures to prevent freezing helps maintain proper operation and prevents potential damage to the compressor components.
6. Monitoring Performance:
Regularly monitor the performance of the gas air compressor in cold weather conditions. Pay attention to any changes in operation, such as reduced air pressure, increased noise, or difficulties in starting. Promptly address any issues and consult the manufacturer or a qualified technician if necessary.
By considering these factors and taking appropriate precautions, gas air compressors can be effectively used in cold weather conditions. However, it is important to consult the specific guidelines provided by the manufacturer for your compressor model, as they may have additional recommendations or specifications for cold weather operation.
Can Gas Air Compressors Be Used for Gas Line Maintenance?
Gas air compressors can be used for certain aspects of gas line maintenance, primarily for tasks that require compressed air. Here’s a detailed explanation:
1. Clearing Debris and Cleaning:
Gas air compressors can be utilized to clear debris and clean gas lines. Compressed air can be directed through the gas lines to dislodge and remove dirt, dust, rust particles, or other contaminants that may accumulate over time. This helps maintain the integrity and efficiency of the gas lines.
2. Pressure Testing:
Gas line maintenance often involves pressure testing to ensure the lines can withstand the required operating pressures. Gas air compressors can provide the necessary compressed air to pressurize the lines for testing purposes. By pressurizing the gas lines with compressed air, technicians can identify any leaks or weaknesses in the system.
3. Leak Detection:
Gas air compressors can also be used in conjunction with appropriate leak detection equipment to identify and locate gas leaks in the gas lines. Compressed air can be introduced into the lines, and the detection equipment can then identify any areas where the compressed air escapes, indicating a potential gas leak.
4. Valve and Equipment Maintenance:
Gas line maintenance may involve the inspection, maintenance, or replacement of valves and associated equipment. Compressed air can be used to clean and blow out debris from valves, purge lines, or assist in the disassembly and reassembly of components.
5. Pipe Drying:
Gas air compressors can aid in drying gas lines after maintenance or repairs. By blowing compressed air through the lines, any residual moisture can be removed, ensuring the gas lines are dry before being put back into service.
6. Precautions and Regulations:
When using gas air compressors for gas line maintenance, it is essential to follow safety precautions and adhere to relevant regulations. Gas line maintenance often involves working in hazardous environments, and proper training, equipment, and procedures must be followed to ensure the safety of personnel and the integrity of the gas system.
It is important to note that gas air compressors should not be used directly for pressurizing or transporting natural gas or other combustible gases. Gas line maintenance tasks involving gas air compressors primarily focus on using compressed air for specific maintenance and testing purposes, as outlined above.
In summary, gas air compressors can be useful for certain aspects of gas line maintenance, including clearing debris, pressure testing, leak detection, valve and equipment maintenance, and pipe drying. However, it is crucial to follow safety guidelines and regulations when working with gas lines and compressed air to ensure the safety and integrity of the gas system.
Are There Different Types of Gas Air Compressors Available?
Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:
1. Reciprocating Gas Air Compressors:
Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.
2. Rotary Screw Gas Air Compressors:
Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.
3. Rotary Vane Gas Air Compressors:
Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.
4. Centrifugal Gas Air Compressors:
Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.
5. Oil-Free Gas Air Compressors:
Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.
6. Portable Gas Air Compressors:
Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.
7. High-Pressure Gas Air Compressors:
High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.
8. Biogas Air Compressors:
Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.
These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.
editor by CX 2024-05-16
China manufacturer V Type High-Pressure 400bar Piston Compressor Low Pressure 12 Barg CHINAMFG air compressor repair near me
Product Description
Advantages of CHINAMFG Process Gas Compressor:
1. High quality material, Stable & Reliable operation
2. Low Maintenance cost & Low noise
3. Easy to install on site and connect with the user’s pipeline system to operate
4. Alarm automatic shutdown to protection machine function
5. Corrosion Resistance
Lubrication includes : Oil lubrication, low-oil lubrication and oil free lubrication;
Cooling method includes: Water cooling, and air cooling.
Installation type includes: Stationary and Skid Mounting.
1. Name: Diesel Enginee Driven 200bar High pressure Skid Mounted Air Compressor
2. Model: LG•V-20/10-200
3. Type: V type high pressure Piston Compressor & Low Pressure Screw Compressor
4. Driven method: Diesel Enginee driven (double output Axles) with Cum mins diesel engine or Germany Manniheim diesel engine
The low pressure screw air compressor and the high pressure piston compressor are separately mounted on the 2 output axles of the diesel engine. The screw machine is directly driven by the diesel engine, and the piston machine is connected with the diesel engine through the reducer.
5. Cooling method: Closed water cooling (Each cooler and unit is water-cooled, and the heat- exchanged water is exchanged twice through the fan to meet the heat exchange requirements of the unit.)
6. Touch Screen display: High degree of automation, reliable performance, on behalf of the current technical level, to ensure that the MTBF 100 hours target.
For this Screw + Piston air compressor is mainly used for pipeline pressure test, sweeping line, gas lift and other projects in oil exploitation, and can also be used as a gas source with air volume above 10m3/min and pressure above to 15Mpa, 20MPa, 30Mpa, 40Mpa etc for other projects in the national economy. The compressor allows the user to step down pressure to use.
The compressor unit is in skid-mounted form, consisting of compressor main compressor, diesel engine, gas pipeline system, cooling system and control system. It is composed of a unit and is mounted on the whole skid-mounted and inner a metal cabinet.
The cabinet body is made of a metal cover, the top of the cover is opened with a vent, the exhaust port of the diesel engine is located outside the cover, and the exhaust muffler of the diesel engine is mounted on the top of the cover. The inside of the cabinet is provided with a lighting lamp, the door is provided with a lock, the front part is set as an operation surface, and the instrument operation cabinet leading to the unit is installed in the operation box. The lower part of the whole set is equipped with a lifting device, which should have sufficient strength to ensure the frequent lifting and transportation needs. Rust and paint inside and outside. The size of the whole set is controlled at 7000×2200×2200 (mm)
The whole compressor has complete performance, reliable quality, easy operation and high work efficiency. It is suitable for field and harsh construction environment (water, dustproof and shockproof). It is a mature styling product with reliable control and easy maintenance.
Inquiry to us!
Note:for the other customizing process gas compressor, please kindly send below information to our factory to calculate the producing cost for your item.
Clients’ inquiries should contain related parameters
A. The gas compression medium
B. Gas composition? or the gas purity?
C. The flow rate: _____Nm3/hr
D. Inlet pressure: _____ Bar (gauge pressure or absolute pressure)
E. Discharge pressure: _____ Bar (gauge pressure or absolute pressure)
F. Inlet temperature
G.Discharge temperature
H. Cooling water temperature as well as other technical requirement.
CHINAMFG TECHNOLOGY ZheJiang CO.,LTD is a high-tech joint-stock enterprise which specializes in the development and designing ,manufacturing and installation, mating remolding and sales service of compressors as well as the corresponding pre-and post-position purifying equipment. CHINAMFG offers you various range of gas compressor like normal standard screw compressor, piston compressor, diaphragm compressor, CNG compressor, CO2 compressor, Hydrogen compressor, Nitrogen booster compressor, etc. for your process handling needs. These products are developed with the highest level of professionalism and innovation. The premium grade raw material and advanced technology is utilized in the production process, which assists us in giving required shape, design and finish to the finished products. The products are then sent to the Quality Control Department for stringent quality tests on various parameters. We view client satisfaction as the witness of our products’ utility and application in all environments. In line with it, we have developed a general framework for comprehending new developments in the compressor industry.
Manufacture special customize Reciprocating Compressor
Besides general gas such as air, the compressed medium may also include flammable and explosive gas, such Natural Gas and Coal Gas as well as special gas which are toxic and corrosive. CHINAMFG has taken a series of technical measures in aspects such as structure material, explosion prevention, anto-control and protection to guarantee safety and reliability. Products are widely used in variety of industries such as Petrochemicals, Petroleum, Chemical textile, Gas Separation, Metallurgy Mine Machinery, Fine Chemicals, Pharmaceutical Chemicals, Energy Chemicals, Machinery Industry, Electronics Industry, Agriculture, Animal Husbandry and Defense Industry, Astronomy, Aerospace, Medical and other fields.
0 | ||||||||||
No. | Model | Compressed medium | F.A.D (Nm3/min) | Inlet Pressure ( Mpa) |
Exhuast Pressure (Mpa) |
Power (KW) |
Speed r/min |
Dimension (L×W×H)mm |
N.W Weight (t) |
Voltage V |
1 | 2D3.5W-14/0.3~6 | Regenerated hydrogen gas | 14N | 0.03 | 0.6 | 90 | 485 | 5200*1800*2500 | 8 | 380 |
2 | 2D3.5W-5.7/6.5 | Regenerated gas | 5.7N | 0.02 | 0.65 | 45 | 485 | 5200*1800*2500 | 5.5 | 380 |
3 | 2D3.5W-17/0.4~12.5 | Synthetic tail gas | 17N | 0.04 | 1.25 | 132 | 485 | 5200*1800*2500 | 5.5 | 380 |
4 | 2D3.5W-20/5 | Feed gas | 20N | 0.002 | 0.5 | 132 | 485 | 5030*2000*2550 | 4.5 | 380 |
5 | 2D3.5W-25/9~49 | Replenish hydrogen | 25N | 0.9 | 4.9 | 132 | 485 | 5400*3500*2200 | 8 | 380 |
6 | 2D3.5W-79/26~49 | Recycle hydrogen | 79N | 2.6 | 4.9 | 160 | 485 | 5400*3500*2030 | 8 | 380 |
7 | 2D3.5W-20/0.1~6 | Feed hydrogen | 20N | 0.01 | 0.6 | 132 | 485 | 4750*2200*2550 | 4.5 | 380 |
8 | 2D3.5W-54/0.02~0.5 | coal gas | 54 | 0.002 | 0.05 | 110 | 585 | 4560*1800*2550 | 5.5 | 380 |
9 | 2D3.5W-16.7/0.2~8 | Synthetic tail gas | 16.7N | 0.01~0.04 | 0.8 | 132 | 485 | 4600*1950*2200 | 4.5 | 380 |
10 | 2D3.5W-36.7/0.3~2.8 | Analytical gas | 36.7N | 0.03 | 0.28 | 160 | 485 | 4190*1800*2490 | 5 | 380 |
11 | 2D3.5W-82/12~22 | Recycle hydrogen | 82N | 1.2 | 2.2 | 160 | 485 | 4300*1300*1740 | 5.5 | 380 |
12 | 2D5.5W-30/8 | coal gas | 30N | Micro positive pressure | 0.8 | 220 | 585 | 3857*1528*2505 | 6.5 | 380 |
13 | 2D5.5W-40/8 | Coke oven gas | 40 | Atmospheric pressure | 0.8 | 250 | 585 | 3935*2571*2585 | 6.5 | 380 |
14 | 2D5.5W-40/8~111 | Coke oven gas | 40N | 0.002~0.015 | 0.8 | 280 | 585 | 3935*2571*2585 | 6.5 | 380 |
15 | 2D5.5W-80/3.5~12.5 | Rich gas | 80N | 0.35 | 1.25 | 280 | 485 | 4502*1750*1965 | 7 | 380 |
16 | 2D5.5W-72/2.5~8.5 | Regenerated gas | 72N | 0.25 | 0.85 | 250 | 485 | 4040*1750*2380 | 6.5 | 10000 |
17 | 2D5.5W-30/0.1~7 | Hydrogen | 30N | 0.01 | 0.7 | 200 | 485 | 4420*1750*2770 | 6.5 | 10000 |
18 | 2D8W-44/10.2 | Reaction gas | 44 | Micro positive pressure | 1.02 | 315 | 496 | 4828*1924*2750 | 8.7 | 6000 |
19 | 2D8W-65/8~25 | Nitrogen gas | 65N | 0.8 | 2.5 | 250 | 490 | 4900*3645*2270 | 11 | 415 |
20 | 2D8W-119/3.9~15 | Recovery hydrogen gas | 119N | 0.39~0.48 | 1.5 | 450 | 485 | 5800*2250*2970 | 7.6 | 10000 |
21 | 2D8W-187.5/5~10 | Regenerated gas | 187.5N | 0.5 | 1 | 400 | 485 | 4890*1875*2550 | 8.7 | 10000 |
22 | 2D8W-110/7~23 | Nitrogen gas | 110N | 0.7 | 2.3 | 400 | 485 | 4700*2000*2330 | 8.4 | 10000 |
23 | 2D8W-60/6 | coal gas | 60 | 0.001~0.0571 | 0.6 | 400 | 485 | 4894*2245*3393 | 9.5 | 10000 |
24 | 2D12W-125/3 | Gas | 125N | 0.004 | 0.3 | 560 | 490 | 6000*2140*3496 | 11 | 6000 |
25 | 2D12W-160/3~ | mixed gas with hydrogen | 160N | 0.3 | 1.1 | 560 | 428 | 6300*2400*2800 | 8.8 | 10000 |
26 | 2D12W-70/0.4~13 | Rich gas | 70N | 0.04 | 1.3 | 560 | 485 | 5700*2600*3500 | 8.8 | 6000 |
27 | 2D12W-152/3.5~12.5 | Rich gas | 152N | 0.35~0.4 | 1.25 | 560 | 420 | 5700*2600*2800 | 10.2 | 6000 |
28 | 2D12W-256/4~9 | Regenerated gas | 256N | 0.4 | 0.9 | 630 | 420 | 5600*2400*3500 | 13.1 | 10000 |
29 | 2D12W-192/2.5~8.5 | Regenerated gas | 192N | 0.25 | 0.85 | 630 | 420 | 5500*2600*3500 | 13.1 | 10000 |
30 | 2D12W-267/5~11 | Nitrogen and hygrogen gas | 267N | 0.5 | 1.1 | 630 | 420 | 6000*2600*3200 | 13.1 | 10000 |
31 | 2D25W-83/2.5~8.5 | Regenerated gas | 83 | 0.25 | 0.85 | 850 | 372 | 7350*2400*3760 | 21 | 10000 |
32 | 2D25W-230/2.5~8.5 | Regenerated gas | 230N | 0.25 | 0.85 | 800 | 372 | 7350*3400*3760 | 21 | 6000 |
33 | 2D25W-26.5/10~40 | Natural gas | 26.5 | 1 | 4 | 1000 | 372 | 7350*2400*3760 | 13.5 | 10000 |
34 | 2D25W-252/4~12.5 | Rich gas | 252N | 0.4 | 1.25 | 710 | 375 | 7400*2650*3500 | 12.9 | 10000 |
35 | 2D25W-252/4~12.5 | Rich gas | 252N | 0.4 | 1.25 | 730 | 375 | 7400*2650*3500 | 13.5 | 10000 |
36 | 2D25W-110/0.2~6 | Rich gas | 110 | 0.02 | 0.6 | 710 | 372 | 7600*3700*4700 | 13.5 | 10000 |
37 | 2D32W-321.2/2.5~8.5 | Regenerated gas | 321.2N | 0.25 | 0.85 | 1000 | 375 | 7800*2800*3760 | 25 | 10000 |
38 | 2D32W-392.7/4.5~15 | Dry feed gas | 392.7N | 0.45 | 1.5 | 1250 | 375 | 7800*2000*4000 | 26 | 6000 |
39 | 2D32W-150/0.2~6 | Rich gas | 150N | 0.02 | 0.6 | 1000 | 333 | 8400*4530*4000 | 36 | 10000 |
40 | 2D32W-87.5/0.4~15.5 | Rich gas | 87.5N | 0.04 | 1.55 | 710 | 375 | 8100*4500*4700 | 32 | 10000 |
41 | 2D32W-160/0.2~10 | Methane gas | 160N | 0.02 | 1 | 1200 | 333 | 8400*4500*5230 | 36 | 10000 |
42 | 2D32W-174/9~64 | Natural gas | 174N | 0.9 | 6.3 | 900 | 333 | 8200*4000*4730 | 25 | 10000 |
43 | 2D32W-145/5~39 | Feed gas | 145N | 0.5 | 3.9 | 800 | 371 | 8200*4000*4730 | 25 | 10000 |
44 | 2D50W-233/2~19 | Reaction gas | 89 | 0.2 | 1.9 | 1120 | 333 | 8700*3400*4700 | 28 | 10000 |
45 | 2D50W-463/4.8~16 | Feed gas | 463N | 0.48 | 1.6 | 1400 | 333 | 8700*3400*4700 | 29 | 10000 |
46 | 2D50W-461.7/5.8~17 | Tail gas | 461.7N | 0.58 | 1.7 | 1400 | 333 | 8700*3400*4700 | 29 | 10000 |
47 | 2D50W-484/7.5~20 | Hydrogen | 484N | 0.75 | 2 | 1400 | 333 | 8700*3400*4700 | 29 | 10000 |
48 | 2D80W-40.2/150~172 | Hydrogen | 40.2 | 15 | 17.2 | 2700 | 300 | 9500*3800*4500 | 50 | 10000 |
49 | 2D80W-128/2~7 | Regenerated gas | 128 | 0.2 | 0.7 | 1000 | 300 | 9600*4200*5000 | 52 | 10000 |
50 | 2D80W-340/2.2~27.5 | Mixed refrigerant | 340 | 0.22 | 2.75 | 1800 | 333 | 9600*4500*5000 | 55 | 10000 |
Test and inspection
1. Part Material Inspection: Before shipment inspecting the mechanical properties and chemical composition of the following parts and provide inspection reports: cylinder, cylinder head, crankshaft, crankcase, main bearing, connecting rod, piston rod, piston rod, cross head, connecting rod bush connecting bolt, cross head pin, etc.
2. Nondestructive inspection: the supplier shall perform non-destructive inspection of the following parts.
Hydrostatic test and pressure test
The test pressure of cylinder block, cylinder head, piston and other compressed parts is at least 1.5 times of the maximum allowable working pressure, and lasts more than 30 minutes. The test pressure of the above parts of the water chamber is at least 1.5 times the maximum allowable working pressure, not less than 0.6MPa.
Our services:
CHINAMFG Provides Top-Rated, Efficient Reciprocating Compressors And Parts. Energy Efficient. Industry Leading Warranty. Low Maintenance. Gas Solution Engineer and Easy Install, promises to give a definite reply within 6 hours for the after-sales product service, can provide overseas Installation service. We can customize all kinds of standard air compressor, flammable gas compressor, toxin gas compressor of reciprocating compressor & diaphragm compressor.
What is advantages of our company?
Right Compressor Right Solution Gas Engineer Company
Whether centrifugal, screw or reciprocating, CHINAMFG is the sole multi-compressor provider for you.
The Best Quality, The Most Reliability
What is need to consider when purchase a correct compressor Upgrade Your Gas Compressor to Save Money & Energy Consumption Gas compressors are a vital part of many industry applications.
Save money and energy in your industrial workplace by upgrading your gas compressor today!
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Lubrication Style: | Oil-free |
---|---|
Cooling System: | Water Cooling |
Power Source: | AC Power |
Cylinder Position: | Angular |
Structure Type: | Closed Type |
Installation Type: | Stationary Type |
Customization: |
Available
|
|
---|
How Do You Troubleshoot Common Issues with Gas Air Compressors?
Troubleshooting common issues with gas air compressors involves identifying and addressing potential problems that may arise during operation. Here’s a detailed explanation of the troubleshooting process:
1. Start with Safety Precautions:
Prior to troubleshooting, ensure that the gas air compressor is turned off and disconnected from the power source. Follow proper safety procedures, such as wearing appropriate personal protective equipment (PPE), to avoid accidents or injuries.
2. Check Power Supply and Connections:
Verify that the compressor is receiving power and that all electrical connections are secure. Inspect the power cord, plug, and any switches or controls to ensure they are functioning properly. If the compressor is equipped with a battery, check its charge level and connections.
3. Check Fuel Supply:
For gas air compressors that use gasoline or propane, ensure that there is an adequate fuel supply. Check the fuel tank level and verify that the fuel shut-off valve is open. If the compressor has been sitting idle for an extended period, old or stale fuel may cause starting issues. Consider draining and replacing the fuel if necessary.
4. Inspect Air Filters:
Dirty or clogged air filters can restrict airflow and affect the compressor’s performance. Check the intake air filters and clean or replace them as needed. Clogged filters can be cleaned with compressed air or washed with mild detergent and water, depending on the type of filter.
5. Check Oil Level and Quality:
If the gas air compressor has an engine with an oil reservoir, verify the oil level using the dipstick or oil level indicator. Insufficient oil can lead to engine damage or poor performance. Additionally, check the oil quality to ensure it is clean and within the recommended viscosity range. If needed, change the oil following the manufacturer’s guidelines.
6. Inspect Spark Plug:
If the gas air compressor uses a spark plug ignition system, inspect the spark plug for signs of damage or fouling. Clean or replace the spark plug if necessary, following the manufacturer’s recommendations for gap setting and torque.
7. Check Belts and Pulleys:
Inspect the belts and pulleys that drive the compressor pump. Loose or worn belts can cause slippage and affect the compressor’s performance. Tighten or replace any damaged belts, and ensure that the pulleys are properly aligned.
8. Listen for Unusual Noises:
During operation, listen for any unusual or excessive noises, such as grinding, rattling, or squealing sounds. Unusual noises could indicate mechanical issues, loose components, or improper lubrication. If identified, consult the compressor’s manual or contact a qualified technician for further inspection and repair.
9. Consult the Owner’s Manual:
If troubleshooting steps do not resolve the issue, refer to the compressor’s owner’s manual for specific troubleshooting guidance. The manual may provide additional troubleshooting steps, diagnostic charts, or recommended maintenance procedures.
10. Seek Professional Assistance:
If the issue persists or if you are unsure about performing further troubleshooting steps, it is recommended to seek assistance from a qualified technician or contact the manufacturer’s customer support for guidance.
Remember to always prioritize safety and follow proper maintenance practices to prevent issues and ensure the reliable performance of the gas air compressor.
How Do You Transport Gas Air Compressors to Different Job Sites?
Transporting gas air compressors to different job sites requires careful planning and consideration of various factors. Here’s a detailed explanation:
1. Equipment Size and Weight:
The size and weight of the gas air compressor are crucial factors to consider when planning transportation. Gas air compressors come in different sizes and configurations, ranging from portable units to larger, skid-mounted or trailer-mounted compressors. Assess the dimensions and weight of the compressor to determine the appropriate transportation method.
2. Transportation Modes:
Gas air compressors can be transported using different modes of transportation, depending on their size, weight, and distance to the job site:
- Truck or Trailer: Smaller gas air compressors can be loaded onto a truck bed or trailer for transportation. Ensure that the vehicle or trailer has the necessary capacity to accommodate the weight and dimensions of the compressor.
- Flatbed or Lowboy Trailer: Larger gas compressors or skid-mounted units may require transportation on a flatbed or lowboy trailer. These trailers are designed to carry heavy equipment and provide stability during transportation.
- Shipping Container: For long-distance transportation or international shipments, gas air compressors can be transported in shipping containers. The compressor must be properly secured and protected within the container to prevent any damage during transit.
3. Securing and Protection:
It is essential to secure the gas air compressor properly during transportation to prevent shifting or damage. Use appropriate tie-down straps, chains, or fasteners to secure the compressor to the transport vehicle or trailer. Protect the compressor from potential impacts, vibrations, and weather conditions by using suitable covers, padding, or weatherproof enclosures.
4. Permits and Regulations:
Depending on the size and weight of the gas air compressor, special permits or escorts may be required for transportation. Familiarize yourself with local, state, and federal regulations regarding oversize or overweight loads, and obtain the necessary permits to ensure compliance with transportation laws.
5. Route Planning:
Plan the transportation route carefully, considering factors such as road conditions, height and weight restrictions, bridges, tunnels, and any other potential obstacles. Identify alternative routes if needed, and communicate with transportation authorities or agencies to ensure a smooth and safe journey.
6. Equipment Inspection and Maintenance:
Prior to transportation, conduct a thorough inspection of the gas air compressor to ensure it is in proper working condition. Check for any leaks, damage, or loose components. Perform routine maintenance tasks, such as oil changes, filter replacements, and belt inspections, to minimize the risk of equipment failure during transportation.
In summary, transporting gas air compressors to different job sites requires considering factors such as equipment size and weight, choosing appropriate transportation modes, securing and protecting the compressor, obtaining necessary permits, planning the route, and conducting equipment inspection and maintenance. Careful planning and adherence to transportation regulations contribute to the safe and efficient transportation of gas air compressors.
Can Gas Air Compressors Be Used in Remote Locations?
Yes, gas air compressors are well-suited for use in remote locations where access to electricity may be limited or unavailable. Their portability and reliance on gas engines make them an ideal choice for providing a reliable source of compressed air in such environments. Here’s a detailed explanation of how gas air compressors can be used in remote locations:
1. Independence from Electrical Grid:
Gas air compressors do not require a direct connection to the electrical grid, unlike electric air compressors. This independence from the electrical grid allows gas air compressors to be used in remote locations, such as wilderness areas, remote job sites, or off-grid locations, where it may be impractical or cost-prohibitive to establish electrical infrastructure.
2. Mobility and Portability:
Gas air compressors are designed to be portable and easy to transport. They are often equipped with handles, wheels, or trailers, making them suitable for remote locations. The gas engine powering the compressor provides mobility, allowing the compressor to be moved to different areas within the remote location as needed.
3. Fuel Versatility:
Gas air compressors can be fueled by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This fuel versatility ensures that gas air compressors can adapt to the available fuel sources in remote locations. For example, if gasoline or diesel is readily available, the gas air compressor can be fueled with these fuels. Similarly, if natural gas or propane is accessible, the compressor can be configured to run on these gases.
4. On-Site Power Generation:
In remote locations where electricity is limited, gas air compressors can serve as on-site power generators. They can power not only the compressor itself but also other equipment or tools that require electricity for operation. This versatility makes gas air compressors useful for a wide range of applications in remote locations, such as powering lights, tools, communication devices, or small appliances.
5. Off-Grid Operations:
Gas air compressors enable off-grid operations, allowing tasks and activities to be carried out in remote locations without relying on external power sources. This is particularly valuable in industries such as mining, oil and gas exploration, forestry, or construction, where operations may take place in remote and isolated areas. Gas air compressors provide the necessary compressed air for pneumatic tools, drilling equipment, and other machinery required for these operations.
6. Emergency Preparedness:
Gas air compressors are also beneficial for emergency preparedness in remote locations. In situations where natural disasters or emergencies disrupt the power supply, gas air compressors can provide a reliable source of compressed air for essential equipment and systems. They can power emergency lighting, communication devices, medical equipment, or backup generators, ensuring operational continuity in critical situations.
7. Adaptability to Challenging Environments:
Gas air compressors are designed to withstand various environmental conditions, including extreme temperatures, humidity, dust, and vibrations. This adaptability to challenging environments makes them suitable for use in remote locations, where environmental conditions may be harsh or unpredictable.
Overall, gas air compressors can be effectively used in remote locations due to their independence from the electrical grid, mobility, fuel versatility, on-site power generation capabilities, suitability for off-grid operations, emergency preparedness, and adaptability to challenging environments. These compressors provide a reliable source of compressed air, enabling a wide range of applications in remote settings.
editor by CX 2024-05-14
China Best Sales Oxygen Gas Cylinder Filling 12nm3 Oil-Free Piston Compressor air compressor lowes
Product Description
Product Description
Oil-inject Piston Air Compressor with air tank
Portable industrial silent oil injection piston air compressor
Technical parameters for W-0.67/8 Industry Piston Compressor
No. | Item | Specification | |
1 | Compressor Model | W-1.0/10 | |
2 | Compress medium | air gas | |
3 | Structure | W Type, Air Cooling, Lubrication type Piston Air Compressor | |
4 | Compress stage number | three stage | |
5 | volume capacity (F.A.D) | 1.0 m3/min | |
6 | Working pressure | 10bar | |
7 | Ambient temperature | ≤-10~+40ºC | |
8 | Discharge temperature | ≤ambient temp + 15ºC | |
9 | Compressor speed(r/min) | 740rpm | |
10 | Motor Power | 15KW ,Three phase asynchronous motor | |
11 | Cooling method | Air Cooling | |
12 | Lubricate method | oil-injection lubrication | |
13 | Driven Method | Belt driven with belt guard | |
14 | Noise | 85dB (A) | |
15 | Dimension | about 1220×580×980mm (L*W*H) | |
16 | Weight | about 280KG |
>>>Features of air compressor
1) Well-designed specifically for small and medium-sized users;
2) The operation is simple, convenient, and less prone to failure;
3) Designed for filling the air available for breathing;
4) Guarantee inflatable gas pure health, no the oil tasteless displacement, high-pressure air filling quickly;
5) Practices can be achieved without power, and to facilitate the fieldwork;
6) Small size, lightweight, easy to move quickly;
7) Cost-effective, economical and practical.
>>Application of air compressor
1) Filling station can be used for fire brigade divers base inflatable station,
2) mine, oil field chemicals, ship, climbing, water sports center industry for human rescue,
3) fire fighting, rescue, underwater operations breathing gas filling is ideal in rescue equipment.
Product Parameters
>>>Specifications of Piston Air Compressor
Air Compressor Pump
1. Air capacity: 6.5- 40.7c.f.m/min
2. working pressure: 8bar / 10bar / 12.5bar
3. Power:1.1-7.5kw
Model | Generator | Cylinder | F.A.D | Working | Tank volume | |
---|---|---|---|---|---|---|
Air delivery | pressure | |||||
KW | HP | Bore and cylinder no.(mm) | M3/min | Mpa | L | |
V-0.2/12.5 | 2.2 | 3 | 65×1/51×1 | 0.2 | 12.5 | 65 |
W-0.6/12.5 | 4 | 5.5 | 80×2/65×1 | 0.6 | 12.5 | 80 |
V-0.42/12.5 | 4 | 5.5 | 105×1/55×1 | 0.42 | 12.5 | 80 |
V-0.53/12.5 | 4 | 5.5 | 105×1/55×1 | 0.53 | 12.5 | 80 |
W-0.67/10 | 5.5 | 7.5 | 105×1/55×1 | 0.6 | 10 | 80 |
W-0.8/14.5 | 7.5 | 10 | 90×2/65×1 | 0.8 | 14.5 | 120 |
W-0.9/12.5 | 7.5 | 10 | 90×2/65×1 | 0.9 | 12.5 | 120 |
V-1.05/10 | 7.5 | 10 | 105×2/55×2 | 1.05 | 10 | 160 |
V-0.8/12.5 | 7.5 | 10 | 105×2/55×2 | 0.8 | 12.5 | 120 |
V-1.05/10 | 7.5 | 10 | 105×2/55×2 | 1.05 | 10 | 160 |
V-0.8/12.5 | 7.5 | 10 | 105×2/55×2 | 0.8 | 12.5 | 160 |
V-1.05/10 | 7.5 | 10 | 105×2/55×2 | 1.05 | 10 | 500 |
V-0.9/14.5-K | 7.5 | 10 | 120×2/63.5×2 | 0.9 | 14.5 | 160 |
V-1.2/10-K | 7.5 | 10 | 120×2/63.5×2 | 1.2 | 10 | 160 |
V-1.2/10-K | 7.5 | 10 | 120×2/63.5×2 | 1.2 | 10 | 300 |
V-1.05/12.5-K | 7.5 | 10 | 120×2/63.5×2 | 1.05 | 12.5 | 300 |
V-1.05/12.5-K | 7.5 | 10 | 120×2/63.5×2 | 1.05 | 12.5 | 330 |
Z-1.6/10 | 11 | 15 | 155×1/85×1 | 1.6 | 10 | 330 |
W-1.6/12.5 | 11 | 15 | 105×2/75×1 | 1.6 | 12.5 | 330 |
W-2.0/10 | 15 | 20 | 120×2/82×1 | 2 | 10 | 330 |
W-2.4/14.5 | 18.2 | 25 | 140×2/90×1 | 2.4 | 14.5 | 330 |
Packaging & Shipping
1. Professional exporting wooden packing.
30 Bar 2m3/min Air Cooling Stage Piston Air Compressor for Piping Pressure Test
Description of air compressor
1) The air compressor carefully designed and manufactured for filling 20MPa-30MPa pressure air cylinders.
2) This is a kind of high-pressure air inflatable equipment available for breathing air. The device has a small size, light weight, easy maintenance, and friendly at moving and operation.
3) Output air non-toxic, odorless. Suitable for filling high pressure air displacement and small and medium-sized gas station
Technical Parameter for PET Oil-free Piston Air Compressor
Model |
Air Delivery |
Working Pressure |
Compressed Stages |
Motor power |
Speed |
Dimension (L*W*H) |
Weight |
|
m3/min |
bar |
kw |
rpm |
mm |
Kg |
|
VW-2.0/30 |
2.0 |
3.0 |
3 |
22 |
620 |
2178*1060*1060 |
690 |
WW-4.0/30 |
4.0 |
2*22 |
3718*1108*1208 |
1380 |
|||
WW-6.0/30 |
6.0 |
2*22 |
2168*1058*2008 |
1380 |
|||
WW-8.0/30 |
8.0 |
3*22 |
5608*1108*1208 |
2070 |
|||
VW-2.0/40 |
2.0 |
4.0 |
22 |
2178*1060*1060 |
690 |
||
WW-4.0/40 |
4.0 |
2*22 |
3718*1108*1208 |
1380 |
|||
WW-6.0/40 |
6.0 |
2*22 |
2168*1058*2008 |
1380 |
|||
WW-8.0/40 |
6.0 |
3*22 |
5608*1108*1208 |
2070 |
*Structure by into trachea-shaped valve and exhaust valve combinations, the main features below :air through the intake manifold valve cavity, along the tangent of the valve flow, impact of approximate straight lines, air valves and flow resistance greatly reduces, so it could provide low noise, long service life.
*Because of the inlet valve inside the vertical spatial distribution, inlet of the valve flow area increased, the valve flow rate and lower drag coefficient, inspiratory volume increase volume efficiency, reduced energy consumption.
*Intake and exhaust valves is the reed valve and strip-type valves fixed unlimited free elastic beam opening and closing movements, without friction and clearance volume small so CHINAMFG combined air valve has excellent dynamic performance and reliability.
Diesel engine-driven Air Compressor
Air Cooling 40bar Oil-Free PET Bottle blowing Piston Air Compressor with skid mounted air dryer and air tank
Especially suitable for: water and electricity, PET bottle blowing, leak detection, m ilitary and other fields
1. Valve materials are made of Sweden stainless steel band.
2. In order to ensure that air compressors highly reliable, using redundant design principles, setting multiple protection measures: unloading, down the drain, exhaust, ensure that the zero-pressure start.
3. Timed drain valve: Drainage and drainage at a time interval can be adjusted. Ensure that the captain of an air compressor runs continuously between regular drainage, effectively preventing water from too much liquid strike accidents.
4. Low exhaust temperature(10.0Mpa exhaust pressure, exhaust air temperature ≤170 degrees, the temperature of exhaust air is above the ambient temperature of 15-20 ºC from aftercooler )
5. Fuel consumption per hour less than 0.143/kw.
6. High reliability and long maintenance period, very low fuel, low energy consumption and so on, greatly reducing the overall general operating costs.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 1year |
---|---|
Warranty: | 1year |
Lubrication Style: | Oil-free |
Cooling System: | Air Cooling |
Cylinder Arrangement: | Balanced Opposed Arrangement |
Cylinder Position: | Vertical |
Samples: |
US$ 480/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can Gas Air Compressors Be Used for Well Drilling?
Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:
1. Air Drilling Method:
Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.
2. Benefits of Gas Air Compressors:
Gas air compressors offer several advantages for well drilling:
- Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
- Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
- Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
- Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.
3. Compressor Selection:
When selecting a gas air compressor for well drilling, several factors should be considered:
- Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
- Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
- Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.
4. Safety Considerations:
It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.
5. Other Considerations:
While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.
In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.
Can Gas Air Compressors Be Used for Pneumatic Tools?
Yes, gas air compressors can be used for pneumatic tools. Here’s a detailed explanation:
1. Versatile Power Source:
Gas air compressors, powered by gasoline or diesel engines, provide a portable and versatile power source for operating pneumatic tools. They eliminate the need for electrical power supply, making them suitable for remote locations or construction sites where electricity may not be readily available.
2. High Power Output:
Gas air compressors typically offer higher power output compared to electric compressors of similar size. This high power output enables gas compressors to deliver the necessary air pressure and volume required by pneumatic tools, ensuring optimal tool performance.
3. Mobility and Portability:
Gas air compressors are often designed with mobility and portability in mind. They are compact and equipped with wheels or handles, allowing for easy transportation to different job sites. This mobility is advantageous when using pneumatic tools in various locations or when working in confined spaces.
4. Continuous Operation:
Gas air compressors can provide continuous air supply for pneumatic tools without the need for frequent pauses or recharging. As long as there is an adequate fuel supply, gas compressors can operate for extended periods, allowing uninterrupted use of pneumatic tools for tasks such as drilling, nailing, sanding, or painting.
5. Suitable for High-Demand Applications:
Pneumatic tools used in heavy-duty applications often require a robust air supply to meet their performance requirements. Gas air compressors can generate higher air flow rates and maintain higher operating pressures, making them suitable for high-demand pneumatic tools like jackhammers, impact wrenches, or sandblasters.
6. Flexibility in Compressor Size:
Gas air compressors are available in various sizes and capacities, allowing users to choose the compressor that best matches the air demands of their pneumatic tools. From small portable compressors for light-duty tasks to larger industrial-grade compressors for heavy-duty applications, there is a wide range of options to suit different tool requirements.
7. Reduced Dependency on Electrical Infrastructure:
Using gas air compressors for pneumatic tools reduces reliance on electrical infrastructure. In situations where the electrical power supply is limited, unreliable, or expensive, gas compressors offer a viable alternative, ensuring consistent tool performance without concerns about power availability.
It’s important to note that gas air compressors emit exhaust gases during operation, so proper ventilation is necessary when using them in enclosed spaces to ensure the safety of workers.
In summary, gas air compressors can effectively power pneumatic tools, offering mobility, high power output, continuous operation, and suitability for various applications. They provide a reliable and portable solution for utilizing pneumatic tools in locations where electrical power supply may be limited or unavailable.
Can Gas Air Compressors Be Used in Remote Locations?
Yes, gas air compressors are well-suited for use in remote locations where access to electricity may be limited or unavailable. Their portability and reliance on gas engines make them an ideal choice for providing a reliable source of compressed air in such environments. Here’s a detailed explanation of how gas air compressors can be used in remote locations:
1. Independence from Electrical Grid:
Gas air compressors do not require a direct connection to the electrical grid, unlike electric air compressors. This independence from the electrical grid allows gas air compressors to be used in remote locations, such as wilderness areas, remote job sites, or off-grid locations, where it may be impractical or cost-prohibitive to establish electrical infrastructure.
2. Mobility and Portability:
Gas air compressors are designed to be portable and easy to transport. They are often equipped with handles, wheels, or trailers, making them suitable for remote locations. The gas engine powering the compressor provides mobility, allowing the compressor to be moved to different areas within the remote location as needed.
3. Fuel Versatility:
Gas air compressors can be fueled by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This fuel versatility ensures that gas air compressors can adapt to the available fuel sources in remote locations. For example, if gasoline or diesel is readily available, the gas air compressor can be fueled with these fuels. Similarly, if natural gas or propane is accessible, the compressor can be configured to run on these gases.
4. On-Site Power Generation:
In remote locations where electricity is limited, gas air compressors can serve as on-site power generators. They can power not only the compressor itself but also other equipment or tools that require electricity for operation. This versatility makes gas air compressors useful for a wide range of applications in remote locations, such as powering lights, tools, communication devices, or small appliances.
5. Off-Grid Operations:
Gas air compressors enable off-grid operations, allowing tasks and activities to be carried out in remote locations without relying on external power sources. This is particularly valuable in industries such as mining, oil and gas exploration, forestry, or construction, where operations may take place in remote and isolated areas. Gas air compressors provide the necessary compressed air for pneumatic tools, drilling equipment, and other machinery required for these operations.
6. Emergency Preparedness:
Gas air compressors are also beneficial for emergency preparedness in remote locations. In situations where natural disasters or emergencies disrupt the power supply, gas air compressors can provide a reliable source of compressed air for essential equipment and systems. They can power emergency lighting, communication devices, medical equipment, or backup generators, ensuring operational continuity in critical situations.
7. Adaptability to Challenging Environments:
Gas air compressors are designed to withstand various environmental conditions, including extreme temperatures, humidity, dust, and vibrations. This adaptability to challenging environments makes them suitable for use in remote locations, where environmental conditions may be harsh or unpredictable.
Overall, gas air compressors can be effectively used in remote locations due to their independence from the electrical grid, mobility, fuel versatility, on-site power generation capabilities, suitability for off-grid operations, emergency preparedness, and adaptability to challenging environments. These compressors provide a reliable source of compressed air, enabling a wide range of applications in remote settings.
editor by CX 2024-05-10
China OEM Liquefied Petroleum Gas Compressor LPG Gas Booster Piston Compressor air compressor portable
Product Description
LPG LNG storage tank LPG compressor Ammonia Reciprocating Piston Compressor
ZW series Oil-Free LPG Gas Compressor, it has many functions, small volume, lightweight, small power, stable and reliable operation, and has good safety performance. It can transport highly volatile liquid such as liquefied petroleum gas and recover the gas left in the tank, Liquid Natural Gas. Due to the unique oil-free lubrication design, there is no need for oil lubrication in the cylinder, so it will not pollute the medium (ensure the purity of gas) and keep the transported substances pure.
Excellent complement, satisfied performance, light weight, small occupying area, more compressing ratio, smooth running, long service life of spare parts, simple operation, reliability and easy maintenance. ZW series compressors have both fixed or movable types; both normal atmosphere (0.1~1.5MPa) and high pressure (1.6~2.4MPa) to meet different requirements of customers.
LPG Compressor Technical Parameters |
||||
Model | Flow rate m3/min | Inlet pressure (MPa) | Discharge pressure (MPa) | Motor power (Kw) |
ZW-0.6/10-16 | 0.6 | 1.0 | 1.6 | 7.5 |
ZW-0.8/10-16 | 0.8 | 1.0 | 1.6 | 11 |
ZW-1.0/10-16 | 1.0 | 1.0 | 1.6 | 15 |
ZW-1.3/10-16 | 1.3 | 1.0 | 1.6 | 18.5 |
ZW-1.5/10-16 | 1.5 | 1.0 | 1.6 | 22 |
ZW-2.0/10-16 | 2.0 | 1.0 | 1.6 | 30 |
ZW-2.5/10-16 | 2.5 | 1.0 | 1.6 | 37 |
ZW-3.0/10-16 | 3.0 | 1.0 | 1.6 | 45 |
ZW-4.0/10-16 | 4.0 | 1.0 | 1.6 | 55 |
ZW-8.0/10-16 | 8.0 | 1.0 | 1.6 | 110 |
ZW-1.0/1-10 | 1.0 | 0.1 | 1.0 | 15 |
ZW-1.0/2-5 | 1.0 | 0.2 | 0.5 | 7.5 |
The above models are commonly used and can be customized according to each industry plant’s different requirements. The above data are calculated according to: Inlet pressure: ≤ 1.0Mpa; Exhaust pressure: ≤ 1.6Mpa; Maximum pressure difference: 0.6Mpa; Maximum instantaneous pressure ratio: ≤6 Cooling mode: air cooling or water cooling (according to end user’s local conditions to design); Inlet temperature: 40ºC; Liquid density of liquefied gas: 582.5kg/m3. |
||||
Basis Design Data
1 The compressor was adopted vertical type single-stage reciprocating piston compressor.
2. Cool Method: air-cooled.
3. Cylinder and packing stuff box all designed oil-free lubrication
4. Valves type is mesh valve
5. Compressor and motor direct driven by tire-type, with whole closed protection cover
6. Compressor set a manual turning mechanism structure
7. The compressor was set automatic stop control system once discharge pressure is higher than the set value
Main purpose and scope of Application
This series of compressors are mainly used for loading, unloading, tank pouring, residual gas recovery, tank vehicle loading, unloading, bottle filling, bottle emptying, conveying, residue removal and residual gas recycling and it can be also used in the processes of other petrol-industries, residual liquid recovery and other operations of LPG. They are ideal equipment for liquid transportation and gas recovery. Therefore, it is widely used in LPG storage and distribution station, gas mixing station, gasification station, tank plant, automobile filling station, etc., especially in large, medium and small LPG stations.
In addition, it is suitable for liquid transportation and residual gas recovery of propane, butane, butene and other volatile substances with low boiling point. Its variant products can be used for liquid transportation and gas recovery of propylene, liquid ammonia, etc.
Technical Paramter
No. | Item | Specification | |
1 | Compressor Model | ZW-0.95/10-15 | |
2 | Compress medium | LPG Gas | |
3 | Structure | Vertical Type, Air Cooking, Single action | |
4 | Compress stage number | single stage | |
5 | volume capacity (F.A.D) | 0.95 m3/min | |
6 | Suction pressure | 1.0Mpa | |
7 | Discharge pressure | 1.5Mpa | |
8 | Suction temperature | ≤40ºC | |
9 | Discharge temperature | ≤110ºC | |
10 | Compressor speed(r/min) | 740rpm | |
11 | Motor Power | 11KW explosion-proof motor: dIIBT4 | |
12 | Cooling method | Air Cooling | |
13 | Lubricate method | Crank case, Crankshaft, Connect rod, Crosshead | Splash lubrication |
Cylinder, filling | Oil free lubrication | ||
14 | Driven Method | Belt driven | |
15 | Installation | with skid-board | |
16 | Noise | 85dB (A) | |
17 | Vibration intensity | 28 | |
18 | Dimension | about 1220×680×980mm | |
19 | Weight | about 360KG | |
20 | Scope of supply | Compressor, motor, common underframe, gas pipeline, four-way valve, safety valve, instrument, random spare parts, factory documents, etc. |
FAQ
Q1: What’s your delivery time?
A: Generally 5-10 days if the goods are in stock. Or it is 20-35 days if the goods are not in stock, it is according to quantity.
Q2: How long is your air compressor warranty?
A: Usually 1 year /12 Months for whole compressor machine, 2years/24months for air end (except maintenance spare parts.). And we can provide further warranty if necessary.
Q3: How long could your compressor machine be used?
A: Generally, design service life for 20years, According to real condition not less than 10 years.
Q4: Can you do OEM for us?
A: Yes, of course. We have around 2 decades OEM experience. And also we can do ODM for you.
Q5: What’s payment term?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, Trade Assurance and etc. Also, we could accept USD, RMB, GBP, Euro, and other currency.
Q6: How about your customer service?
A: 24 hours on-line service available. 48hours problem sovled promise.
Q7: How about your after-sales service?
A: 1. Provide customers with intallation and commissioning online instructions.
2. Well-trained engineers available to overseas after-sales service.
Q8. Are you factory?
A4: Absolutely! You have touched the primary sources of Air /Gas Compressor. We are factory.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Lubrication Style: | Oil-free |
---|---|
Cooling System: | Air Cooling |
Cylinder Arrangement: | Balanced Opposed Arrangement |
Cylinder Position: | Vertical |
Structure Type: | Closed Type |
Compress Level: | Single-Stage |
Samples: |
US$ 2800/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How Do You Troubleshoot Common Issues with Gas Air Compressors?
Troubleshooting common issues with gas air compressors involves identifying and addressing potential problems that may arise during operation. Here’s a detailed explanation of the troubleshooting process:
1. Start with Safety Precautions:
Prior to troubleshooting, ensure that the gas air compressor is turned off and disconnected from the power source. Follow proper safety procedures, such as wearing appropriate personal protective equipment (PPE), to avoid accidents or injuries.
2. Check Power Supply and Connections:
Verify that the compressor is receiving power and that all electrical connections are secure. Inspect the power cord, plug, and any switches or controls to ensure they are functioning properly. If the compressor is equipped with a battery, check its charge level and connections.
3. Check Fuel Supply:
For gas air compressors that use gasoline or propane, ensure that there is an adequate fuel supply. Check the fuel tank level and verify that the fuel shut-off valve is open. If the compressor has been sitting idle for an extended period, old or stale fuel may cause starting issues. Consider draining and replacing the fuel if necessary.
4. Inspect Air Filters:
Dirty or clogged air filters can restrict airflow and affect the compressor’s performance. Check the intake air filters and clean or replace them as needed. Clogged filters can be cleaned with compressed air or washed with mild detergent and water, depending on the type of filter.
5. Check Oil Level and Quality:
If the gas air compressor has an engine with an oil reservoir, verify the oil level using the dipstick or oil level indicator. Insufficient oil can lead to engine damage or poor performance. Additionally, check the oil quality to ensure it is clean and within the recommended viscosity range. If needed, change the oil following the manufacturer’s guidelines.
6. Inspect Spark Plug:
If the gas air compressor uses a spark plug ignition system, inspect the spark plug for signs of damage or fouling. Clean or replace the spark plug if necessary, following the manufacturer’s recommendations for gap setting and torque.
7. Check Belts and Pulleys:
Inspect the belts and pulleys that drive the compressor pump. Loose or worn belts can cause slippage and affect the compressor’s performance. Tighten or replace any damaged belts, and ensure that the pulleys are properly aligned.
8. Listen for Unusual Noises:
During operation, listen for any unusual or excessive noises, such as grinding, rattling, or squealing sounds. Unusual noises could indicate mechanical issues, loose components, or improper lubrication. If identified, consult the compressor’s manual or contact a qualified technician for further inspection and repair.
9. Consult the Owner’s Manual:
If troubleshooting steps do not resolve the issue, refer to the compressor’s owner’s manual for specific troubleshooting guidance. The manual may provide additional troubleshooting steps, diagnostic charts, or recommended maintenance procedures.
10. Seek Professional Assistance:
If the issue persists or if you are unsure about performing further troubleshooting steps, it is recommended to seek assistance from a qualified technician or contact the manufacturer’s customer support for guidance.
Remember to always prioritize safety and follow proper maintenance practices to prevent issues and ensure the reliable performance of the gas air compressor.
Can Gas Air Compressors Be Used for Pneumatic Tools?
Yes, gas air compressors can be used for pneumatic tools. Here’s a detailed explanation:
1. Versatile Power Source:
Gas air compressors, powered by gasoline or diesel engines, provide a portable and versatile power source for operating pneumatic tools. They eliminate the need for electrical power supply, making them suitable for remote locations or construction sites where electricity may not be readily available.
2. High Power Output:
Gas air compressors typically offer higher power output compared to electric compressors of similar size. This high power output enables gas compressors to deliver the necessary air pressure and volume required by pneumatic tools, ensuring optimal tool performance.
3. Mobility and Portability:
Gas air compressors are often designed with mobility and portability in mind. They are compact and equipped with wheels or handles, allowing for easy transportation to different job sites. This mobility is advantageous when using pneumatic tools in various locations or when working in confined spaces.
4. Continuous Operation:
Gas air compressors can provide continuous air supply for pneumatic tools without the need for frequent pauses or recharging. As long as there is an adequate fuel supply, gas compressors can operate for extended periods, allowing uninterrupted use of pneumatic tools for tasks such as drilling, nailing, sanding, or painting.
5. Suitable for High-Demand Applications:
Pneumatic tools used in heavy-duty applications often require a robust air supply to meet their performance requirements. Gas air compressors can generate higher air flow rates and maintain higher operating pressures, making them suitable for high-demand pneumatic tools like jackhammers, impact wrenches, or sandblasters.
6. Flexibility in Compressor Size:
Gas air compressors are available in various sizes and capacities, allowing users to choose the compressor that best matches the air demands of their pneumatic tools. From small portable compressors for light-duty tasks to larger industrial-grade compressors for heavy-duty applications, there is a wide range of options to suit different tool requirements.
7. Reduced Dependency on Electrical Infrastructure:
Using gas air compressors for pneumatic tools reduces reliance on electrical infrastructure. In situations where the electrical power supply is limited, unreliable, or expensive, gas compressors offer a viable alternative, ensuring consistent tool performance without concerns about power availability.
It’s important to note that gas air compressors emit exhaust gases during operation, so proper ventilation is necessary when using them in enclosed spaces to ensure the safety of workers.
In summary, gas air compressors can effectively power pneumatic tools, offering mobility, high power output, continuous operation, and suitability for various applications. They provide a reliable and portable solution for utilizing pneumatic tools in locations where electrical power supply may be limited or unavailable.
What Fuels Are Commonly Used in Gas Air Compressors?
Gas air compressors can be powered by various fuels depending on the specific model and design. The choice of fuel depends on factors such as availability, cost, convenience, and environmental considerations. Here’s a detailed explanation of the fuels commonly used in gas air compressors:
1. Gasoline:
Gasoline is a widely used fuel in gas air compressors, particularly in portable models. Gasoline-powered compressors are popular due to the widespread availability of gasoline and the convenience of refueling. Gasoline engines are generally easy to start, and gasoline is relatively affordable in many regions. However, gasoline-powered compressors may emit more exhaust emissions compared to some other fuel options.
2. Diesel:
Diesel fuel is another common choice for gas air compressors, especially in larger industrial models. Diesel engines are known for their efficiency and durability, making them suitable for heavy-duty applications. Diesel fuel is often more cost-effective than gasoline, and diesel-powered compressors typically offer better fuel efficiency and longer runtime. Diesel compressors are commonly used in construction sites, mining operations, and other industrial settings.
3. Natural Gas:
Natural gas is a clean-burning fuel option for gas air compressors. It is a popular choice in areas where natural gas infrastructure is readily available. Natural gas compressors are often used in natural gas processing plants, pipeline operations, and other applications where natural gas is abundant. Natural gas-powered compressors offer lower emissions compared to gasoline or diesel, making them environmentally friendly.
4. Propane:
Propane, also known as liquefied petroleum gas (LPG), is commonly used as a fuel in gas air compressors. Propane-powered compressors are popular in construction, agriculture, and other industries where propane is used for various applications. Propane is stored in portable tanks, making it convenient for use in portable compressors. Propane-powered compressors are known for their clean combustion, low emissions, and easy availability.
5. Biogas:
In specific applications, gas air compressors can be fueled by biogas, which is produced from the decomposition of organic matter such as agricultural waste, food waste, or wastewater. Biogas compressors are used in biogas production facilities, landfills, and other settings where biogas is generated and utilized as a renewable energy source. The use of biogas as a fuel in compressors contributes to sustainability and reduces dependence on fossil fuels.
It’s important to note that the availability and suitability of these fuel options may vary depending on the region, infrastructure, and specific application requirements. When selecting a gas air compressor, it’s crucial to consider the compatibility of the compressor with the available fuel sources and to follow the manufacturer’s guidelines regarding fuel selection, storage, and safety precautions.
editor by CX 2024-05-09
China Best Sales Reciprocating Oil-Free Propane Hydraulic Driven Hydrogen Natural Gas Piston Hydrogen Compressor Manufacturer mini air compressor
Product Description
Reciprocating Micro-Oil Oil-free Piston Compressor
( Blue Font To View Hyperlink)
Our company specialize in making various kinds of compressors, such as:Diaphragm compressor,Piston compressor, Air compressors,Nitrogen generator,Oxygen generator ,Gas cylinder,etc. All products can be customized according to your parameters and other requirements.
This series of oil-free compressor is one of the first products produced by our factory in China. The product has the characteristics of low speed, high component strength, stable operation, long service life and convenient maintenance. This series compressor is in the form of unit. It integrates compressor, gas-liquid separator, filter, 2 position four-way valve, safety valve, check valve, explosion-proof motor and chassis. The utility model has the advantages of small volume, light weight, low noise, good sealing performance, easy installation, simple operation, etc.
Main components
1. Motion system: crankshaft, piston connecting rod assembly, coupling, etc.
2. Air distribution system: valve plate, valve spring, etc.
3. Sealing system: piston ring, oil seal, gasket, packing, etc.
4. Body system: crankcase, cylinder block, cylinder liner, cover plate, etc.
5. Lubrication system: lubricating oil pump, oil filter, pressure regulating valve, etc.;
6. Safety and energy regulation systems: safety valves, energy regulation devices, etc.
Working principle of piston compressor
When the crankshaft of the piston compressor rotates, the piston will reciprocate through the transmission of the connecting rod, and the working volume formed by the inner wall of the cylinder, the cylinder head and the top surface of the piston will periodically change. When the piston of a piston compressor starts to move from the cylinder head, the working volume in the cylinder gradually increases. At this time, the gas flows along the intake pipe and pushes the intake valve to enter the cylinder until the working volume reaches the maximum. , The intake valve is closed; when the piston of the piston compressor moves in the reverse direction, the working volume in the cylinder is reduced, and the gas pressure is increased. When the pressure in the cylinder reaches and is slightly higher than the exhaust pressure, the exhaust valve opens and the gas is discharged from the cylinder , Until the piston moves to the limit position, the exhaust valve is closed. When the piston of the piston compressor moves in the reverse direction again, the above process repeats. In short, the crankshaft of a piston compressor rotates once, the piston reciprocates once, and the process of air intake, compression, and exhaust is realized in the cylinder, which completes a work cycle.
Advantages of piston compressor
1. The applicable pressure range of the piston compressor is wide, and the required pressure can be reached regardless of the flow rate;
2. The piston compressor has high thermal efficiency and low unit power consumption;
3. Strong adaptability, that is, a wide exhaust range, and is not affected by the pressure level, and can adapt to a wider pressure range and cooling capacity requirements;
4. Piston compressors have low requirements for materials, and use common steel materials, which is easier to process and lower in cost;
5. The piston compressor is relatively mature in technology, and has accumulated rich experience in production and use;
6. The device system of the piston compressor is relatively simple.
Note: In the unloading process, the compressor pressurizes the gas from the storage tank and then presses it into the tank car through the gas-phase pipeline, and presses the liquid from the tank car to the storage tank through the gas-phase differential pressure to complete the unloading process. When the gas phase is pressurized, the temperature of the gas phase will rise. At this time, forced cooling is not necessary, because if the gas phase is compressed and then cooled, it is easy to liquefy, and it is difficult to establish the pressure difference of the gas phase, which is not conducive to the replacement of the gas phase and the liquid phase. In short, it will cause the prolongation of the unloading process. If it is necessary to recover the residual gas, the cooler can be selected to forcibly cool the gas phase during the recovery operation, so as to recover the residual gas as soon as possible.The loading process is opposite to the unloading process.
Chemical Process Compressor Description
Chemical process compressors refer to process reciprocating piston compressors used to compress various single or mixed media gases in petroleum and chemical processes, as well as chemical exhaust gas recycling systems. Its main function is to transport the medium gas in the reaction device and provide the required pressure to the reaction device. Features 1. Designed for specific process flow. 2. The whole machine is skid-mounted and advanced in structure. 3. The compressor types are: Z type, D type, M type. 4. The middle body of the slideway and the cylinder can be designed in different structural forms according to the process requirements.
Reference Technical parameters and specifications
Model | Volume flow(Nm3/h) | Suction pressure(Mpa) | Exhaust pressure (Mpa) | Motor power(kw) | Dimension (mm) | |
1 | ZW-0.4/ 2-250 | 60 | 0.2 | 25 | 18.5 | 2800*2200*1600 |
2 | ZW-0.81/ (1~3)-25 | 120 | 0.1~0.3 | 2.5 | 22 | 1000*580*870 |
3 | DW-5.8/0.5-5 | 400~500 | 0.05 | 0.5 | 37 | 2000*1600*1200 |
4 | DW-10/2 | 510 | Atmospheric pressure | 0.2 | 37 | 2000*1600*1200 |
5 | DW-6.0/5 | 300 | Atmospheric pressure | 0.5 | 37 | 2000*1600*1200 |
6 | DW-0.21/(20~30)-250 | 270 | 2~3 | 25 | 45 | 3200*2200*1600 |
7 | ZW-0.16/60-250 | 480 | 6 | 25 | 45 | 3000*2200*1600 |
8 | ZW-0.46 /(5~10)-250 | 200 | 0.5~1.0 | 25 | 45 | 3000*2200*1600 |
9 | DW-1.34/2-250 | 208 | 0.2 | 25 | 55 | 3400*2200*1600 |
10 | DW-0.6/24-85 | 720 | 2.4 | 8.5 | 55 | 2200*1600*1200 |
11 | ZW-2.9/14.2-20 | 220 | 1.42 | 2 | 55 | 2200*1600*1200 |
12 | VW-2.0/(2~4)-25 | 410 | 0.2~0.4 | 2.5 | 55 | 3400*2200*1600 |
13 | DW-0.85/(3~4)-250 | 180 | 0.3~0.4 | 25 | 55 | 2400*1800*1500 |
14 | DW-25-(0.2~0.3)-1.5 | 1620 | 0.02~0.03 | 0.15 | 75 | 2400*1800*1500 |
15 | VW-8.0/0.3-25 | 540 | 0.03 | 2.5 | 90 | 2400*1800*1500 |
16 | DW-6.8/0.05-40 | 200~400 | 0.005 | 4 | 90 | 2400*1800*1500 |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 18 Months |
---|---|
Warranty: | 18 Months |
Lubrication Style: | Lubricated |
Cooling System: | Water Cooling |
Cylinder Arrangement: | Balanced Opposed Arrangement |
Cylinder Position: | Angular |
Customization: |
Available
|
|
---|
What Is the Typical Lifespan of a Gas Air Compressor?
The typical lifespan of a gas air compressor can vary depending on several factors, including the quality of the compressor, its usage patterns, maintenance practices, and environmental conditions. However, with proper care and maintenance, a gas air compressor can last for many years. Here’s a detailed explanation of the factors that can affect the lifespan of a gas air compressor:
1. Quality of the Compressor:
The quality and construction of the gas air compressor play a significant role in determining its lifespan. Compressors made with high-quality materials, precision engineering, and robust components are generally more durable and can withstand heavy usage over an extended period.
2. Usage Patterns:
The usage patterns of the gas air compressor can impact its lifespan. If the compressor is used consistently and for extended periods, it may experience more wear and tear compared to compressors used intermittently or for lighter tasks. Heavy-duty applications, such as continuous operation with high-demand tools, can put more strain on the compressor and potentially reduce its lifespan.
3. Maintenance Practices:
Regular maintenance is crucial for extending the lifespan of a gas air compressor. Following the manufacturer’s recommended maintenance schedule, performing routine tasks like oil changes, filter cleaning/replacement, and inspection of components can help prevent issues and ensure optimal performance. Neglecting maintenance can lead to accelerated wear and potential breakdowns.
4. Environmental Conditions:
The operating environment can significantly impact the lifespan of a gas air compressor. Factors such as temperature extremes, humidity levels, presence of dust or debris, and exposure to corrosive substances can affect the compressor’s components and overall performance. Compressors used in harsh environments may require additional protection or specialized maintenance to mitigate these adverse conditions.
5. Proper Installation and Operation:
Proper installation and correct operation of the gas air compressor are essential for its longevity. Following the manufacturer’s guidelines for installation, ensuring proper ventilation, maintaining correct oil levels, and operating within the compressor’s specified capacity and pressure limits can help prevent excessive strain and premature wear.
Considering these factors, a well-maintained gas air compressor can typically last anywhere from 10 to 15 years or even longer. However, it’s important to note that this is a general estimate, and individual results may vary. Some compressors may experience shorter lifespans due to heavy usage, inadequate maintenance, or other factors, while others may last well beyond the expected lifespan with proper care and favorable conditions.
Ultimately, investing in a high-quality gas air compressor, adhering to recommended maintenance practices, and using it within its intended capabilities can help maximize its lifespan and ensure reliable performance for an extended period.
Can Gas Air Compressors Be Used for Natural Gas Compression?
Gas air compressors are not typically used for natural gas compression. Here’s a detailed explanation:
1. Different Compressed Gases:
Gas air compressors are specifically designed to compress atmospheric air. They are not typically designed or suitable for compressing natural gas. Natural gas, which is primarily composed of methane, requires specialized compressors designed to handle the unique properties and characteristics of the gas.
2. Safety Considerations:
Natural gas compression involves handling a flammable and potentially hazardous substance. Compressing natural gas requires specialized equipment that meets stringent safety standards to prevent leaks, minimize the risk of ignition or explosion, and ensure the safe handling of the gas. Gas air compressors may not have the necessary safety features or materials to handle natural gas safely.
3. Equipment Compatibility:
Natural gas compression systems typically include components such as gas compressors, gas coolers, separators, and control systems that are specifically designed and engineered for the compression and handling of natural gas. These components are built to withstand the specific demands and conditions associated with natural gas compression, including the high pressures and potential presence of impurities.
4. Efficiency and Performance:
Compressing natural gas requires specialized compressors that can handle the high-pressure ratios and volumetric flow rates associated with the gas. Gas air compressors are generally not designed to achieve the same compression ratios and performance levels required for natural gas compression. Using gas air compressors for natural gas compression would likely result in inefficient operation and suboptimal performance.
5. Regulatory Compliance:
Compressing natural gas is subject to various regulations and standards to ensure safety, environmental protection, and compliance with industry guidelines. These regulations often dictate specific requirements for equipment, materials, and operating procedures in natural gas compression systems. Gas air compressors may not meet these regulatory requirements for natural gas compression.
6. Industry Standards and Practices:
The natural gas industry has well-established standards and best practices for equipment selection, installation, and operation in gas compression systems. These standards are based on the specific requirements and characteristics of natural gas. Gas air compressors do not align with these industry standards and practices, which are essential for safe and efficient natural gas compression.
In summary, gas air compressors are not suitable for natural gas compression. Natural gas compression requires specialized equipment designed to handle the unique properties and safety considerations associated with the gas. Compressors specifically engineered for natural gas compression offer the necessary performance, safety features, and regulatory compliance required for efficient and reliable operation in natural gas compression systems.
Can Gas Air Compressors Be Used in Remote Locations?
Yes, gas air compressors are well-suited for use in remote locations where access to electricity may be limited or unavailable. Their portability and reliance on gas engines make them an ideal choice for providing a reliable source of compressed air in such environments. Here’s a detailed explanation of how gas air compressors can be used in remote locations:
1. Independence from Electrical Grid:
Gas air compressors do not require a direct connection to the electrical grid, unlike electric air compressors. This independence from the electrical grid allows gas air compressors to be used in remote locations, such as wilderness areas, remote job sites, or off-grid locations, where it may be impractical or cost-prohibitive to establish electrical infrastructure.
2. Mobility and Portability:
Gas air compressors are designed to be portable and easy to transport. They are often equipped with handles, wheels, or trailers, making them suitable for remote locations. The gas engine powering the compressor provides mobility, allowing the compressor to be moved to different areas within the remote location as needed.
3. Fuel Versatility:
Gas air compressors can be fueled by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This fuel versatility ensures that gas air compressors can adapt to the available fuel sources in remote locations. For example, if gasoline or diesel is readily available, the gas air compressor can be fueled with these fuels. Similarly, if natural gas or propane is accessible, the compressor can be configured to run on these gases.
4. On-Site Power Generation:
In remote locations where electricity is limited, gas air compressors can serve as on-site power generators. They can power not only the compressor itself but also other equipment or tools that require electricity for operation. This versatility makes gas air compressors useful for a wide range of applications in remote locations, such as powering lights, tools, communication devices, or small appliances.
5. Off-Grid Operations:
Gas air compressors enable off-grid operations, allowing tasks and activities to be carried out in remote locations without relying on external power sources. This is particularly valuable in industries such as mining, oil and gas exploration, forestry, or construction, where operations may take place in remote and isolated areas. Gas air compressors provide the necessary compressed air for pneumatic tools, drilling equipment, and other machinery required for these operations.
6. Emergency Preparedness:
Gas air compressors are also beneficial for emergency preparedness in remote locations. In situations where natural disasters or emergencies disrupt the power supply, gas air compressors can provide a reliable source of compressed air for essential equipment and systems. They can power emergency lighting, communication devices, medical equipment, or backup generators, ensuring operational continuity in critical situations.
7. Adaptability to Challenging Environments:
Gas air compressors are designed to withstand various environmental conditions, including extreme temperatures, humidity, dust, and vibrations. This adaptability to challenging environments makes them suitable for use in remote locations, where environmental conditions may be harsh or unpredictable.
Overall, gas air compressors can be effectively used in remote locations due to their independence from the electrical grid, mobility, fuel versatility, on-site power generation capabilities, suitability for off-grid operations, emergency preparedness, and adaptability to challenging environments. These compressors provide a reliable source of compressed air, enabling a wide range of applications in remote settings.
editor by CX 2024-04-29
China Best Sales Oil-Free Piston Oxygen Hydrogen Nitrogen Booster Compressor High Pressure Gas Compressor air compressor portable
Product Description
Product Description
Oil-free Piston Oxygen Hydrogen Nitrogen Booster Compressor High Pressure Gas Compressor
4-12 m3/h air-cooled oil-free filling oxygen compressor
Oxygen compressors refer to compressors used to pressurize oxygen for transportation or storage.
There are 2 types of commonly used medical oxygen compressors. One is that PSA oxygen concentrators in hospitals need to be pressurized to supply various wards and operating rooms. It provides 7-10 kg of line pressure. Oxygen from a PSA needs to be stored in a high pressure container for ease of use. The storage pressure is usually a pressure of 100 barg, 150 barg, 200 barg or 300 barg.
Advantages and characteristics of oil-free oxygen booster compressor
1. Oil-free, stainless steel cylinder
2. No pollution, keep the gas purity unchanged
3. Low maintenance cost and easy operation.
4. According to the customer’s specific working conditions, the compressor is designed as single-stage compression, two-stage compression, three-stage compression and four-stage compression.
5. Low speed, long life, average speed 260-400RPM,
6. Continuous continuous heavy-duty operation, can run stably for 24 hours without stopping
There are 2 types of oil-free oxygen filling cylinder compression, air cooling and water cooling, vertical structure, CHINAMFG series high-pressure oil-free lubrication oxygen compressor, excellent performance, stable operation, high efficiency and energy saving, long service life, widely used in oxygen , chemical process and plateau oxygen supply, combined with an oxygen generator, forms a simple and safe high-pressure oxygen system.
Technical parameter
Flow rate | Inlet pressure | Outlet pressure | Motor power | Crankcase | Inlet size | Outlet size | Dimension | Weight | Inlet/Outlet temperature |
mm | kg | ºC | |||||||
1-3 m3/h | 3-4 bar | 150 bar | 1.5-3 kw | Aluminum alloy | M14*1.5 | M14*1.5 | 850*640*680 | 140 | 45 |
200 bar | |||||||||
4-12 m3/h | 3-4 bar | 150 bar | 3-5.5 kw | Small two-row four-level | DN15 | M16*1.5 | 1000*800*1100 | 320 | 45 |
200 bar | |||||||||
13-60 m3/h | 3-4 bar | 150 bar | 11-18.5 kw | Medium two-row four-level | DN25 | M16*1.5 | 1650*950*1470 | 960 | 45 |
200 bar | |||||||||
60-70 m3/h | 3-4 bar | 150 bar | 22 kw | 6H | DN40 | M22*1.5 | 1950*1350*1400 | 1300 | 45 |
80-150 m3/h | 3-4 bar | 150 bar | 30-45 kw | Big two-row four-level | DN50 | M22*1.5 | 2100*1100*1600 | 2000 | 45 |
200 bar | |||||||||
10-15 m3/h | 3-4 bar | 150 bar | 5.5-7.5 kw | New four-row four-level | DN15 | M16*1.5 | 1050*750*1571 | 450 | 45 |
200 bar |
The basi c parameters li sted i n this table can be confi r’med accordi ngtothe actual worki ng condi ti ons.
The parameters of the pressurized 20MPa filling machine are compared with those of the same 15MPa flow model.
The strength and precision of all host parts are increased, and the precision of electrical parts (unloading solenoid valve) and cut- off valve (20MPa high pressure) is greatly improved than that of 15MPa filling machine.
Application industry
Industrial applications for oxygen compressors include booster use of low pressure oxygen for VSA applications in steel mills, paper mills and water treatment plants.
Successful cases
Customer Visit
Packaging & Shipping
• Packing Details: Plywood crate pallet plus foam board and bubble film, Full closed wooden case. 1pcs/each package (for stationary screw air compressor)
• Shipping method: by sea, by LCL/FCL or as requested
• Delivery method: FOB, CFR, CIF and EXW etc.
• Delivery time: in 7-15 days after receiving deposit (customized machines not included)
Company Profile
ZheJiang CHINAMFG Machinery Co., Ltd. is a company dedicated to the production and research and development of various gas compression equipment. The company was established in 2012 and has a total of 5 licensed technical engineers. Mainly engaged in air, nitrogen, CO2 and other special gas compression equipment and after-treat equipment. With the development in recent years, the company has established a foreign trade team in ZheJiang , and hired foreign trade consultants with 10 years of industry experience to better serve customers worldwide. With excellent quality and the support of 30 distributors worldwide, our annual sales in 2018 exceeded 5 million US dollars. We look CHINAMFG to working with you to create a better tomorrow!
After Sales Service
1. 24/7 after sales service support in different languages.
2. Customized color, Model ect.
3. Guidance of installation and commissioning on site can be provided by factory-trained technicians or local Authorized Service Center.
4. Delivery on time and excellent after-sales service.
5. Plenty of original spare parts with proven quality.
6. All kinds of technical documents in different languages.
Payment and delivery
FAQ
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of screw air compressor of HangZhou,ZheJiang ,China. More than 18 years of experience in air compressor manufacturing.
Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.
Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.
Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3.CHINAMFG agents and after service avaiable.arrange our engineers to help you training and installation.
Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.
Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.
Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.
Q8. How do you control quality ?
A: 1. The raw materials are strictly inspected
2. Some key parts are imported from overseas
3. Each compressor must pass at least 5 hours of continuous testing before leaving the factory.
Q9. Do you offer OEM service ?
A: Yes.Both OEM & ODM service can be accepted.
Q10.How long could your air compressor be used?
A: Generally, more than 10 years.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Support |
---|---|
Warranty: | 24 Months |
Lubrication Style: | Oil-free |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How Do Gas Air Compressors Compare to Diesel Air Compressors?
When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:
1. Fuel Efficiency:
Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.
2. Power Output:
Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.
3. Cost:
In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.
4. Maintenance Requirements:
Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.
5. Environmental Impact:
When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.
6. Portability and Mobility:
Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.
It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.
In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.
How Do You Transport Gas Air Compressors to Different Job Sites?
Transporting gas air compressors to different job sites requires careful planning and consideration of various factors. Here’s a detailed explanation:
1. Equipment Size and Weight:
The size and weight of the gas air compressor are crucial factors to consider when planning transportation. Gas air compressors come in different sizes and configurations, ranging from portable units to larger, skid-mounted or trailer-mounted compressors. Assess the dimensions and weight of the compressor to determine the appropriate transportation method.
2. Transportation Modes:
Gas air compressors can be transported using different modes of transportation, depending on their size, weight, and distance to the job site:
- Truck or Trailer: Smaller gas air compressors can be loaded onto a truck bed or trailer for transportation. Ensure that the vehicle or trailer has the necessary capacity to accommodate the weight and dimensions of the compressor.
- Flatbed or Lowboy Trailer: Larger gas compressors or skid-mounted units may require transportation on a flatbed or lowboy trailer. These trailers are designed to carry heavy equipment and provide stability during transportation.
- Shipping Container: For long-distance transportation or international shipments, gas air compressors can be transported in shipping containers. The compressor must be properly secured and protected within the container to prevent any damage during transit.
3. Securing and Protection:
It is essential to secure the gas air compressor properly during transportation to prevent shifting or damage. Use appropriate tie-down straps, chains, or fasteners to secure the compressor to the transport vehicle or trailer. Protect the compressor from potential impacts, vibrations, and weather conditions by using suitable covers, padding, or weatherproof enclosures.
4. Permits and Regulations:
Depending on the size and weight of the gas air compressor, special permits or escorts may be required for transportation. Familiarize yourself with local, state, and federal regulations regarding oversize or overweight loads, and obtain the necessary permits to ensure compliance with transportation laws.
5. Route Planning:
Plan the transportation route carefully, considering factors such as road conditions, height and weight restrictions, bridges, tunnels, and any other potential obstacles. Identify alternative routes if needed, and communicate with transportation authorities or agencies to ensure a smooth and safe journey.
6. Equipment Inspection and Maintenance:
Prior to transportation, conduct a thorough inspection of the gas air compressor to ensure it is in proper working condition. Check for any leaks, damage, or loose components. Perform routine maintenance tasks, such as oil changes, filter replacements, and belt inspections, to minimize the risk of equipment failure during transportation.
In summary, transporting gas air compressors to different job sites requires considering factors such as equipment size and weight, choosing appropriate transportation modes, securing and protecting the compressor, obtaining necessary permits, planning the route, and conducting equipment inspection and maintenance. Careful planning and adherence to transportation regulations contribute to the safe and efficient transportation of gas air compressors.
How Do You Choose the Right Size Gas Air Compressor for Your Needs?
Choosing the right size gas air compressor is crucial to ensure optimal performance and efficiency for your specific needs. Selecting a compressor that is too small may result in insufficient airflow or pressure, while choosing one that is too large can lead to unnecessary energy consumption and higher costs. Here’s a detailed explanation of the factors to consider when choosing the right size gas air compressor:
1. Required Airflow:
Determine the airflow requirements of your applications. Consider the tools, equipment, or processes that will be powered by the compressor and their respective airflow demands. The required airflow is typically measured in cubic feet per minute (CFM). Determine the total CFM required, taking into account any simultaneous or intermittent tool usage.
2. Operating Pressure:
Identify the operating pressure required for your applications. Different tools and systems have specific pressure requirements, measured in pounds per square inch (PSI). Ensure that the compressor you choose can deliver the required pressure consistently.
3. Duty Cycle:
Consider the duty cycle, which refers to the amount of time the compressor will be in operation within a given period. Some applications may require continuous operation, while others involve intermittent or occasional use. Take into account the duty cycle to ensure that the compressor can handle the expected workload without overheating or experiencing excessive wear.
4. Tank Size:
The tank size of a gas air compressor determines its ability to store compressed air and provide a steady supply. A larger tank can help accommodate fluctuations in demand and reduce the frequency of the compressor cycling on and off. Consider the required storage capacity based on the specific applications and the desired balance between continuous operation and storage capacity.
5. Power Source:
Gas air compressors can be powered by different fuels, such as gasoline, diesel, natural gas, or propane. Consider the availability and cost of the fuel options in your location, as well as the specific requirements of your applications. Choose a compressor that is compatible with a power source that suits your needs.
6. Portability:
Determine if portability is a requirement for your applications. If you need to move the compressor to different job sites or locations, consider a portable model with features like wheels, handles, or a compact design that facilitates easy transportation.
7. Noise Level:
If noise is a concern in your working environment, consider the noise level of the compressor. Gas air compressors can vary in their noise output, and certain models may have noise-reducing features or insulation to minimize sound emissions.
8. Manufacturer Recommendations:
Consult the manufacturer’s recommendations and guidelines for selecting the appropriate compressor size for your specific needs. Manufacturers often provide guidelines based on the anticipated applications, airflow requirements, and other factors to help you make an informed decision.
By considering these factors and carefully assessing your specific requirements, you can choose the right size gas air compressor that meets your airflow, pressure, duty cycle, and other operational needs. It’s advisable to consult with industry professionals or compressor experts for guidance, especially for complex or specialized applications.
editor by CX 2024-04-27
China Best Sales 15bar Liquid Petroleum Gas Compressor LPG Gas Piston Booster Compressor arb air compressor
Product Description
LPG LNG storage tank LPG compressor Ammonia Reciprocating Piston Compressor
ZW series Oil-Free LPG Gas Compressor, it has many functions, small volume, lightweight, small power, stable and reliable operation, and has good safety performance. It can transport highly volatile liquid such as liquefied petroleum gas and recover the gas left in the tank, Liquid Natural Gas. Due to the unique oil-free lubrication design, there is no need for oil lubrication in the cylinder, so it will not pollute the medium (ensure the purity of gas) and keep the transported substances pure.
Excellent complement, satisfied performance, light weight, small occupying area, more compressing ratio, smooth running, long service life of spare parts, simple operation, reliability and easy maintenance. ZW series compressors have both fixed or movable types; both normal atmosphere (0.1~1.5MPa) and high pressure (1.6~2.4MPa) to meet different requirements of customers.
LPG Compressor Technical Parameters |
||||
Model | Flow rate m3/min | Inlet pressure (MPa) | Discharge pressure (MPa) | Motor power (Kw) |
ZW-0.6/10-16 | 0.6 | 1.0 | 1.6 | 7.5 |
ZW-0.8/10-16 | 0.8 | 1.0 | 1.6 | 11 |
ZW-1.0/10-16 | 1.0 | 1.0 | 1.6 | 15 |
ZW-1.3/10-16 | 1.3 | 1.0 | 1.6 | 18.5 |
ZW-1.5/10-16 | 1.5 | 1.0 | 1.6 | 22 |
ZW-2.0/10-16 | 2.0 | 1.0 | 1.6 | 30 |
ZW-2.5/10-16 | 2.5 | 1.0 | 1.6 | 37 |
ZW-3.0/10-16 | 3.0 | 1.0 | 1.6 | 45 |
ZW-4.0/10-16 | 4.0 | 1.0 | 1.6 | 55 |
ZW-8.0/10-16 | 8.0 | 1.0 | 1.6 | 110 |
ZW-1.0/1-10 | 1.0 | 0.1 | 1.0 | 15 |
ZW-1.0/2-5 | 1.0 | 0.2 | 0.5 | 7.5 |
The above models are commonly used and can be customized according to each industry plant’s different requirements. The above data are calculated according to: Inlet pressure: ≤ 1.0Mpa; Exhaust pressure: ≤ 1.6Mpa; Maximum pressure difference: 0.6Mpa; Maximum instantaneous pressure ratio: ≤6 Cooling mode: air cooling or water cooling (according to end user’s local conditions to design); Inlet temperature: 40ºC; Liquid density of liquefied gas: 582.5kg/m3. |
||||
Basis Design Data
1 The compressor was adopted vertical type single-stage reciprocating piston compressor.
2. Cool Method: air-cooled.
3. Cylinder and packing stuff box all designed oil-free lubrication
4. Valves type is mesh valve
5. Compressor and motor direct driven by tire-type, with whole closed protection cover
6. Compressor set a manual turning mechanism structure
7. The compressor was set automatic stop control system once discharge pressure is higher than the set value
Main purpose and scope of Application
This series of compressors are mainly used for loading, unloading, tank pouring, residual gas recovery, tank vehicle loading, unloading, bottle filling, bottle emptying, conveying, residue removal and residual gas recycling and it can be also used in the processes of other petrol-industries, residual liquid recovery and other operations of LPG. They are ideal equipment for liquid transportation and gas recovery. Therefore, it is widely used in LPG storage and distribution station, gas mixing station, gasification station, tank plant, automobile filling station, etc., especially in large, medium and small LPG stations.
In addition, it is suitable for liquid transportation and residual gas recovery of propane, butane, butene and other volatile substances with low boiling point. Its variant products can be used for liquid transportation and gas recovery of propylene, liquid ammonia, etc.
Technical Paramter
No. | Item | Specification | |
1 | Compressor Model | ZW-0.95/10-15 | |
2 | Compress medium | LPG Gas | |
3 | Structure | Vertical Type, Air Cooking, Single action | |
4 | Compress stage number | single stage | |
5 | volume capacity (F.A.D) | 0.95 m3/min | |
6 | Suction pressure | 1.0Mpa | |
7 | Discharge pressure | 1.5Mpa | |
8 | Suction temperature | ≤40ºC | |
9 | Discharge temperature | ≤110ºC | |
10 | Compressor speed(r/min) | 740rpm | |
11 | Motor Power | 11KW explosion-proof motor: dIIBT4 | |
12 | Cooling method | Air Cooling | |
13 | Lubricate method | Crank case, Crankshaft, Connect rod, Crosshead | Splash lubrication |
Cylinder, filling | Oil free lubrication | ||
14 | Driven Method | Belt driven | |
15 | Installation | with skid-board | |
16 | Noise | 85dB (A) | |
17 | Vibration intensity | 28 | |
18 | Dimension | about 1220×680×980mm | |
19 | Weight | about 360KG | |
20 | Scope of supply | Compressor, motor, common underframe, gas pipeline, four-way valve, safety valve, instrument, random spare parts, factory documents, etc. |
FAQ
Q1: What’s your delivery time?
A: Generally 5-10 days if the goods are in stock. Or it is 20-35 days if the goods are not in stock, it is according to quantity.
Q2: How long is your air compressor warranty?
A: Usually 1 year /12 Months for whole compressor machine, 2years/24months for air end (except maintenance spare parts.). And we can provide further warranty if necessary.
Q3: How long could your compressor machine be used?
A: Generally, design service life for 20years, According to real condition not less than 10 years.
Q4: Can you do OEM for us?
A: Yes, of course. We have around 2 decades OEM experience. And also we can do ODM for you.
Q5: What’s payment term?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, Trade Assurance and etc. Also, we could accept USD, RMB, GBP, Euro, and other currency.
Q6: How about your customer service?
A: 24 hours on-line service available. 48hours problem sovled promise.
Q7: How about your after-sales service?
A: 1. Provide customers with intallation and commissioning online instructions.
2. Well-trained engineers available to overseas after-sales service.
Q8. Are you factory?
A4: Absolutely! You have touched the primary sources of Air /Gas Compressor. We are factory.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Lubrication Style: | Oil-free |
---|---|
Cooling System: | Air Cooling |
Cylinder Arrangement: | Balanced Opposed Arrangement |
Cylinder Position: | Vertical |
Structure Type: | Closed Type |
Compress Level: | Single-Stage |
Samples: |
US$ 2800/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
What Is the Noise Level of Gas Air Compressors?
The noise level of gas air compressors can vary depending on several factors, including the compressor’s design, engine type, operating conditions, and the presence of noise-reducing features. Here’s a detailed explanation:
1. Compressor Design:
The design of the gas air compressor can influence its noise level. Some compressors are engineered with noise reduction in mind, utilizing features such as sound insulation, vibration dampening materials, and mufflers to minimize noise generation. Compressors with enclosed cabinets or acoustic enclosures tend to have lower noise levels compared to open-frame compressors.
2. Engine Type:
The type of engine used in the gas air compressor can impact the noise level. Gas air compressors typically use internal combustion engines powered by gasoline or propane. Gasoline engines tend to produce higher noise levels compared to diesel engines or electric motors. However, advancements in engine technology have led to quieter gasoline engines with improved noise control.
3. Operating Conditions:
The operating conditions of the gas air compressor can affect the noise level. Factors such as the load capacity, speed of operation, and ambient temperature can influence the amount of noise generated. Compressors operating at higher loads or speeds may produce more noise compared to those running at lower levels.
4. Noise-Reducing Features:
Some gas air compressors are equipped with noise-reducing features to minimize sound emissions. These may include built-in silencers, acoustic enclosures, or noise-absorbing materials. Such features help dampen the noise produced by the compressor and reduce its overall noise level.
5. Manufacturer Specifications:
Manufacturers often provide noise level specifications for their gas air compressors. These specifications typically indicate the sound pressure level (SPL) in decibels (dB) at a specific distance from the compressor. It is important to refer to these specifications to get an idea of the expected noise level of a particular compressor model.
6. Distance and Location:
The distance between the gas air compressor and the listener can impact the perceived noise level. As sound waves disperse, the noise level decreases with distance. Locating the compressor in an area that is isolated or distant from occupied spaces can help minimize the impact of noise on the surrounding environment.
It is important to note that gas air compressors, especially those used in industrial or heavy-duty applications, can generate substantial noise levels. Occupational health and safety regulations may require the use of hearing protection for individuals working in close proximity to loud compressors.
Overall, the noise level of gas air compressors can vary, and it is advisable to consult the manufacturer’s specifications and consider noise-reducing features when selecting a compressor. Proper maintenance, such as regular lubrication and inspection of components, can also help minimize noise levels and ensure optimal performance.
What Are the Key Components of a Gas Air Compressor Control Panel?
A gas air compressor control panel typically consists of several key components. Here’s a detailed explanation:
1. Power Switch:
The power switch allows the operator to turn the compressor on or off. It is usually a toggle switch or a push-button switch located on the control panel.
2. Pressure Gauges:
Pressure gauges display the compressed air pressure at different stages of the compression process. Commonly, there are two pressure gauges: one to measure the incoming air pressure (suction pressure) and another to measure the outgoing compressed air pressure (discharge pressure).
3. Control Knobs or Buttons:
Control knobs or buttons are used to adjust and set various parameters of the compressor operation. These controls may include pressure settings, on/off timers, automatic start/stop functions, and other operational parameters specific to the compressor model.
4. Emergency Stop Button:
An emergency stop button is a critical safety feature that immediately shuts down the compressor in case of an emergency. Pressing the emergency stop button cuts off power to the compressor and stops its operation.
5. Motor Start/Stop Buttons:
Motor start and stop buttons allow the operator to manually start or stop the compressor motor. These buttons are used when manual control of the motor is required, such as during maintenance or troubleshooting.
6. Control Indicators:
Control indicators include various lights or LEDs that provide visual feedback about the compressor’s status and operation. These indicators may include power indicators, motor running indicators, pressure indicators, and fault indicators to signal any malfunctions or abnormal conditions.
7. Control Panel Display:
Some gas air compressors feature a control panel display that provides real-time information and feedback on the compressor’s performance. The display may show parameters such as operating pressure, temperature, maintenance alerts, fault codes, and other relevant information.
8. Start/Stop Control Circuit:
The start/stop control circuit is responsible for initiating and controlling the motor start and stop sequences. It typically includes relays, contactors, and other electrical components that enable the control panel to safely start and stop the compressor motor.
9. Safety and Protection Devices:
Gas air compressor control panels may incorporate safety and protection devices to safeguard the compressor and prevent potential damage or hazardous situations. These devices can include overload relays, thermal protection, pressure relief valves, and other safety features.
10. Control Panel Enclosure:
The control panel enclosure houses and protects the electrical components and wiring of the control panel. It provides insulation, protection from dust and moisture, and ensures the safety of the operator.
In summary, a gas air compressor control panel typically includes a power switch, pressure gauges, control knobs or buttons, emergency stop button, motor start/stop buttons, control indicators, control panel display (if applicable), start/stop control circuit, safety and protection devices, and a control panel enclosure. These components work together to monitor and control the compressor’s operation, ensure safety, and provide essential information to the operator.
Are There Different Types of Gas Air Compressors Available?
Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:
1. Reciprocating Gas Air Compressors:
Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.
2. Rotary Screw Gas Air Compressors:
Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.
3. Rotary Vane Gas Air Compressors:
Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.
4. Centrifugal Gas Air Compressors:
Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.
5. Oil-Free Gas Air Compressors:
Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.
6. Portable Gas Air Compressors:
Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.
7. High-Pressure Gas Air Compressors:
High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.
8. Biogas Air Compressors:
Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.
These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.
editor by CX 2024-04-25
China OEM CHINAMFG 2025 Electric Power 1.5kw 2HP Direct Driven Piston Gas Air Compressor with Good quality
Product Description
1.Feature:
Smart appearance, portable direct driven, universal quick connector match with various air tools.
2.Specification:
Model | Motor | Capacity | Pressure | Cylinder | Speed | Air Tank | Weight | Packing dimension |
SY-2571 | 1.5KW(2HP) | 120L/Min | 8Bar | φ42mm×1 | 2800RPM | 25L | 22KG | 54×28×60CM |
3.Compressed Air Solutions:
All the professionalism you need to have your correct supply of AIR(Air Volume, Air Pressure and Air Quality)
• When it comes to air (you need it, we have it).
• Piston compressors Cast Iron, Aluminum.
• Screw compressors, and all compressor accessories.
• Motors, Air Pumps, Regulators, Filters, Dryers, after coolers and so on.
• Our Heavy Duty Air Compressors with a sense of(Quality saves your cost)
• Unique Design and Engineering, special Machining Standards.
• Skilled labor for assembly line, backed up with technical support worldwide.
4.About us:
Founded in 2571, ZheJiang CHINAMFG HangZhoui Technology Co., Ltd. is a subsidiary of CHINAMFG Electrical Stock Company,The company mainly produces air compressors,air blower,baking burner for tobacco and equipment. The company’s sales and operation headquarters is located in ZheJiang , the main production base is located in the eastern new area of HangZhou City, ZHangZhoug Province, covering an area of nearly 100 mu, with nearly 90,000 square production workshop, at the same time in ZheJiang HangZhou District CHINAMFG production base. Adhering to the corporate culture of CHINAMFG COMPANY “quality creation Sayi, credibility and integrity based on the world “, the company actively develops, forge ahead, and is committed to building the company into an international company with core competitiveness and leading the innovation and development of the industry.
5.Why choose us:
6.FAQ:
Q1: Are you the manufacturer or trading company?
A1: We are the manufacturer.
Q2: Where is your factory?
A2: It is located in HangZhou City, ZHangZhoug Province, China.
Q3: What’s the terms of trade?
A3: FOB,CFR,CIF or EXW are all acceptable.
Q4: What’s the terms of payment?
A4: T/T,L/C at sight or cash.
Q5: How long is your delivery time?
A5: Generally it is 5-10 days if the goods are in stock or it is 20-30 days if the goods are not in stock, it is according to quantity.
Q6: What is the advantage about your company?
A6: Our company has professional team and professional production line.
Q7: If we travel to China to checking your facility, are you welcome?
A7: Of course, why not? We will provide the whole accompany from you landing in China. Only Give us a call before your arrive. We will pick up you from the airport, living in our company’s hotel, and driving by car take you visiting our company. Warm Welcome!
Q8: How Many Years of your company working in this industry?
A8: We have 20-year experience in this field.
7. Contact us:
ZheJiang CHINAMFG HangZhouI TECHNOLOGY CO., LTD.
Address:Company Address: O Block,10th Floor,768 Xietu Road, Xihu (West Lake) Dis. District, ZheJiang
Address:ZHangZhoug Factory Address :23rd Street, New Eastern District, HangZhou City, ZHangZhoug Province
Address:ZheJiang Factory Address :1515 Xihu (West Lake) Dis. Road, Luojing Town, HangZhou District, ZheJiang
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | New Replacement |
---|---|
Warranty: | 1year |
Lubrication Style: | Lubricated |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can Gas Air Compressors Be Used for Well Drilling?
Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:
1. Air Drilling Method:
Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.
2. Benefits of Gas Air Compressors:
Gas air compressors offer several advantages for well drilling:
- Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
- Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
- Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
- Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.
3. Compressor Selection:
When selecting a gas air compressor for well drilling, several factors should be considered:
- Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
- Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
- Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.
4. Safety Considerations:
It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.
5. Other Considerations:
While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.
In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.
Can Gas Air Compressors Be Used for Natural Gas Compression?
Gas air compressors are not typically used for natural gas compression. Here’s a detailed explanation:
1. Different Compressed Gases:
Gas air compressors are specifically designed to compress atmospheric air. They are not typically designed or suitable for compressing natural gas. Natural gas, which is primarily composed of methane, requires specialized compressors designed to handle the unique properties and characteristics of the gas.
2. Safety Considerations:
Natural gas compression involves handling a flammable and potentially hazardous substance. Compressing natural gas requires specialized equipment that meets stringent safety standards to prevent leaks, minimize the risk of ignition or explosion, and ensure the safe handling of the gas. Gas air compressors may not have the necessary safety features or materials to handle natural gas safely.
3. Equipment Compatibility:
Natural gas compression systems typically include components such as gas compressors, gas coolers, separators, and control systems that are specifically designed and engineered for the compression and handling of natural gas. These components are built to withstand the specific demands and conditions associated with natural gas compression, including the high pressures and potential presence of impurities.
4. Efficiency and Performance:
Compressing natural gas requires specialized compressors that can handle the high-pressure ratios and volumetric flow rates associated with the gas. Gas air compressors are generally not designed to achieve the same compression ratios and performance levels required for natural gas compression. Using gas air compressors for natural gas compression would likely result in inefficient operation and suboptimal performance.
5. Regulatory Compliance:
Compressing natural gas is subject to various regulations and standards to ensure safety, environmental protection, and compliance with industry guidelines. These regulations often dictate specific requirements for equipment, materials, and operating procedures in natural gas compression systems. Gas air compressors may not meet these regulatory requirements for natural gas compression.
6. Industry Standards and Practices:
The natural gas industry has well-established standards and best practices for equipment selection, installation, and operation in gas compression systems. These standards are based on the specific requirements and characteristics of natural gas. Gas air compressors do not align with these industry standards and practices, which are essential for safe and efficient natural gas compression.
In summary, gas air compressors are not suitable for natural gas compression. Natural gas compression requires specialized equipment designed to handle the unique properties and safety considerations associated with the gas. Compressors specifically engineered for natural gas compression offer the necessary performance, safety features, and regulatory compliance required for efficient and reliable operation in natural gas compression systems.
Are There Different Types of Gas Air Compressors Available?
Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:
1. Reciprocating Gas Air Compressors:
Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.
2. Rotary Screw Gas Air Compressors:
Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.
3. Rotary Vane Gas Air Compressors:
Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.
4. Centrifugal Gas Air Compressors:
Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.
5. Oil-Free Gas Air Compressors:
Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.
6. Portable Gas Air Compressors:
Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.
7. High-Pressure Gas Air Compressors:
High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.
8. Biogas Air Compressors:
Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.
These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.
editor by CX 2024-04-10
China OEM Displacement Piston CNG/Natural Gas Compressor with Hot selling
Product Description
Detailed Photos
Air Cooling Refueling Station Reciprocating CNG Compressor
Description&Advantages
Product Descriptions:
The gas station, which takes natural gas input through pipelines, increases the pressure on-site and then either directly fills or stores the gas in fixed storage cylinder groups (wells) for refueling CNG vehicles with CNG. The process system consists of a pressure regulation and metering device, desulfurization and dehydration equipment, a natural gas compressor, CNG storage facilities, a sequential control device, CNG refueling facilities, safety protection devices for refueling process equipment, electrical devices, CNG pipelines and components, etc
Advantages:
Our products, incorporating technology from Austria’s LMF and Germany’s CHINAMFG Demag companies, exhibit high reliability. Wearable parts like gas valves and piston rings use products from Austria’s Hoerbiger company, with a lifespan exceeding 8000 hours. The system supports soft starting, allowing frequent start and stop cycles for the compressor. It features a wide intake range for broad adaptability. The overall skid-mounted structure results in low noise and is easy to install in urban areas, leading to investment savings.
It is equipped with a CHINAMFG PLC control system for high automation, ABB soft start (or variable frequency), and features automatic shutdown with audible and visual alarms in case of faults
Product Parameters
Model | Inlet Pressure (Mpa) |
Outlet Pressure (Mpa) |
Capacity (Nm3/h) |
Power (Kw) |
Remarks |
ZF-0.16/6-250 | 0.6 | 25 | 68 | 22 | |
VF-2.4/8-250 | 0.8 | 25 | 1300 | 220 | |
VF-0.76/10-250 | 1.0 | 25 | 500 | Q6135DR1 | |
VF-2.2/10-250 | 1.0 | 25 | 1452 | 220-8 | |
VF-3.2/(2.5-4)-250 | 0.25-0.4 | 25 | 670-1000 | 270 | |
VF-2/(10-16)-250 | 1.0-1.6 | 25 | 1320-2000 | 280 | |
VF-2.5/3-210 | 0.3 | 21 | 600 | 132 | |
VF-0.11/(70-200)-250 | 7-20 | 25 | 468-1326 | 30 | |
VF-2.5/(0.8-1.6)-250 | 0.08-0.16 | 25 | 270-390 | 90 | |
VF-2/(2-3)-250 | 0.2-0.3 | 25 | 360-480 | 110 | |
VF-1.1/(5-6)-250 | 0.5-0.6 | 25 | 396-462 | 90 | |
VF-0.54/30-250 | 3.0 | 25 | 1004 | 110 | |
VF-0.8/30-250 | 3.0 | 25 | 1488 | 160 | |
VF-0.28/(40-80)-250 | 4.0-8.0 | 25 | 688-1360 | 90 | |
VFD-0.36/(20-200)-250 | 2.0-20 | 25 | 680-2210 | 110 | Soundproof Cabin |
VFD-0.32/(20-200)-250 | 2.0-20 | 25 | 600-1700 | 90 | Soundproof Cabin |
VFD-0.28/(20-200)-250 | 2.0-20 | 25 | 525-1430 | 75 | Soundproof Cabin |
VFD-0.16/(20-200)-250 | 2.0-20 | 25 | 600 | 55 | Soundproof Cabin |
Note: This series of CNG refueling station compressors can be customized with the following parameters: Pressure: 0.2-20Mpa, Flow rate: 400-1200 Nm³/h. |
Our Factory
Part of Customer Visit
Certifications & Testing
Related Product
FAQ
Q:Are you a factory?
A:Yes, we are indeed a factory. We specialize in manufacturing high-quality Air/Gas Compressors and are proud to be a primary source for these products.
Q:How long is your delivery time?
A:It varies depending on the specific situation. For our standard configuration compressors, the delivery time is around 30 days. For customized compressors, it usually takes about 30-45 days.
Q:What technical support do you offer?
A:We offer comprehensive technical support to our clients, including remote assistance for installation and commissioning processes. Additionally, we have a team of seasoned engineers ready to be deployed to international client locations for meticulous on-site debugging, installation, and post-installation services.
Q:What is your warranty period?
A:Our warranty policy is valid for a period of 18 months from the date of commissioning at the end customer’s site or 21 months from the date of receipt by the purchaser, whichever comes first. This comprehensive coverage is designed to ensure total customer satisfaction and the reliability of our products
Q:How do you package the compressors?
A:For smaller compressors, we utilize robust plywood boxes that conform to export specifications.
For the larger units, we strategically place them in freight containers, implementing secure fastening methods to safeguard against any potential damage during the shipping process.
Q:What are your payment terms?
A:Usually, the payment is made by T/T with a 30% down payment CHINAMFG confirmation of the Proforma Invoice (PI), and the balance is to be paid after inspection and before shipment. We accept both TT and L/C at sight.
Send message Get product Offer & Brochure!!!
↓↓↓
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Local Teams |
---|---|
Warranty: | 18 Months |
Lubrication Style: | Oil-free |
Cooling System: | Air Cooling/Water Cooling |
Cylinder Arrangement: | Balanced Opposed Arrangement |
Cylinder Position: | Customized |
Samples: |
US$ 40000/Set
1 Set(Min.Order) | |
---|
Customization: |
Available
|
|
---|
What Is the Fuel Efficiency of Gas Air Compressors?
The fuel efficiency of gas air compressors can vary depending on several factors, including the compressor’s design, engine size, load capacity, and usage patterns. Gas air compressors typically use internal combustion engines powered by gasoline or propane to generate the mechanical energy required for compressing air. Here’s a detailed explanation of the factors that can influence the fuel efficiency of gas air compressors:
1. Engine Design and Size:
The design and size of the engine in a gas air compressor can impact its fuel efficiency. Engines with advanced technologies such as fuel injection and electronic controls tend to offer better fuel efficiency compared to older carbureted engines. Additionally, larger engines may consume more fuel to produce the required power, resulting in lower fuel efficiency compared to smaller engines for the same workload.
2. Load Capacity and Usage Patterns:
The load capacity and usage patterns of the gas air compressor play a significant role in fuel efficiency. Compressors operating at or near their maximum load capacity for extended periods may consume more fuel compared to compressors operating at lower loads. Additionally, compressors used intermittently or for lighter tasks may have better fuel efficiency due to reduced demand on the engine.
3. Maintenance and Tuning:
Proper maintenance and tuning of the gas air compressor’s engine can improve fuel efficiency. Regular maintenance tasks such as oil changes, air filter cleaning/replacement, spark plug inspection, and tuning the engine to the manufacturer’s specifications can help ensure optimal engine performance and fuel efficiency.
4. Operating Conditions:
The operating conditions, including ambient temperature, altitude, and humidity, can affect the fuel efficiency of gas air compressors. Extreme temperatures or high altitudes may require the engine to work harder, resulting in increased fuel consumption. Additionally, operating in humid conditions can affect the combustion process and potentially impact fuel efficiency.
5. Fuel Type:
The type of fuel used in the gas air compressor can influence its fuel efficiency. Gasoline and propane are common fuel choices for gas air compressors. The energy content and combustion characteristics of each fuel can affect the amount of fuel consumed per unit of work done. It is important to consider the specific fuel requirements and recommendations of the compressor manufacturer for optimal fuel efficiency.
6. Operator Skills and Practices:
The skills and practices of the operator can also impact fuel efficiency. Proper operation techniques, such as avoiding excessive idling, maintaining consistent engine speeds, and minimizing unnecessary load cycles, can contribute to improved fuel efficiency.
It is important to note that specific fuel efficiency ratings for gas air compressors can vary widely depending on the aforementioned factors. Manufacturers may provide estimated fuel consumption rates or fuel efficiency data for their specific compressor models, which can serve as a reference point when comparing different models or making purchasing decisions.
Ultimately, to maximize fuel efficiency, it is recommended to select a gas air compressor that suits the intended application, perform regular maintenance, follow the manufacturer’s guidelines, and operate the compressor efficiently based on the workload and conditions.
Can Gas Air Compressors Be Used in Agriculture?
Yes, gas air compressors can be used in various agricultural applications. Here’s a detailed explanation:
1. Pneumatic Tools and Equipment:
Gas air compressors can power a wide range of pneumatic tools and equipment used in agriculture. These tools include pneumatic drills, impact wrenches, nail guns, staplers, and pneumatic pumps. Gas air compressors provide the necessary compressed air to operate these tools, making various tasks more efficient and convenient on the farm.
2. Irrigation Systems:
Gas air compressors can be used to power irrigation systems in agriculture. They can supply compressed air to operate pneumatic valves, which control the flow of water in irrigation networks. Gas air compressors ensure reliable and efficient operation of irrigation systems, facilitating the distribution of water to crops in a controlled manner.
3. Grain Handling and Storage:
Air compressors play a vital role in grain handling and storage facilities. They are used to power aeration systems that provide airflow to grains stored in silos or bins. Aeration helps control the temperature and moisture levels, preventing spoilage and maintaining grain quality. Gas air compressors provide the airflow necessary for effective aeration in grain storage operations.
4. Cleaning and Maintenance:
In agriculture, gas air compressors are commonly used for cleaning and maintenance tasks. They can power air blowers or air guns to remove dust, debris, or chaff from machinery, equipment, or storage areas. Gas air compressors provide a high-pressure stream of compressed air, facilitating efficient cleaning and maintenance operations.
5. Livestock Operations:
Gas air compressors find applications in livestock operations as well. They can power pneumatic equipment used for animal care, such as pneumatic nail guns for building or repairing livestock enclosures, pneumatic pumps for water distribution, or pneumatic tools for general maintenance tasks.
6. Portable and Versatile:
Gas air compressors are often portable and can be easily transported around the farm, allowing flexibility in agricultural operations. Their versatility makes them suitable for various tasks, from powering tools and equipment in the field to providing compressed air for maintenance or cleaning in different farm locations.
7. Remote Locations:
In agricultural settings where access to electricity may be limited, gas air compressors offer a reliable alternative. They can be powered by gasoline or diesel engines, providing compressed air even in remote areas without electrical infrastructure.
8. Considerations:
When using gas air compressors in agriculture, it is essential to consider factors such as compressor size, capacity, and maintenance requirements. Selecting the right compressor based on the specific needs of the agricultural applications ensures optimal performance and efficiency.
In summary, gas air compressors have various applications in agriculture. They can power pneumatic tools and equipment, operate irrigation systems, facilitate grain handling and storage, assist in cleaning and maintenance tasks, support livestock operations, and offer portability and versatility. Gas air compressors contribute to increased efficiency, convenience, and productivity in agricultural operations.
What Is a Gas Air Compressor?
A gas air compressor is a type of air compressor that is powered by a gas engine instead of an electric motor. It uses a combustion engine, typically fueled by gasoline or diesel, to convert fuel energy into mechanical energy, which is then used to compress air. Here’s a detailed explanation of a gas air compressor:
1. Power Source:
A gas air compressor utilizes a gas engine as its power source. The engine can be fueled by gasoline, diesel, or other types of combustible gases, such as natural gas or propane. The combustion engine drives the compressor pump to draw in air and compress it to a higher pressure.
2. Portable and Versatile:
Gas air compressors are often designed to be portable and versatile. The gas engine provides mobility, allowing the compressor to be easily transported and used in different locations, including remote job sites or areas without access to electricity. This makes gas air compressors suitable for applications such as construction projects, outdoor activities, and mobile service operations.
3. Compressor Pump:
The compressor pump in a gas air compressor is responsible for drawing in air and compressing it. The pump can be of various types, including reciprocating, rotary screw, or centrifugal, depending on the specific design of the gas air compressor. The pump’s role is to increase the pressure of the incoming air, resulting in compressed air that can be used for various applications.
4. Pressure Regulation:
Gas air compressors typically feature pressure regulation mechanisms to control the output pressure of the compressed air. This allows users to adjust the pressure according to the requirements of the specific application. The pressure regulation system may include pressure gauges, regulators, and safety valves to ensure safe and reliable operation.
5. Applications:
Gas air compressors find applications in a wide range of industries and activities. They are commonly used in construction sites for powering pneumatic tools such as jackhammers, nail guns, and impact wrenches. Gas air compressors are also utilized in agriculture for operating air-powered machinery like sprayers and pneumatic seeders. Additionally, they are employed in recreational activities such as inflating tires, sports equipment, or inflatable structures.
6. Maintenance and Fuel Considerations:
Gas air compressors require regular maintenance, including engine servicing, oil changes, and filter replacements, to ensure optimal performance and longevity. The type of fuel used in the gas engine also needs to be considered. Gasoline-powered compressors are commonly used in smaller applications, while diesel-powered compressors are preferred for heavy-duty and continuous operation due to their higher fuel efficiency and durability.
Overall, a gas air compressor is an air compressor that is powered by a gas engine, offering mobility and versatility. It provides compressed air for various applications and is commonly used in construction, agriculture, and outdoor activities. Regular maintenance and fuel considerations are essential to ensure reliable operation and optimal performance.
editor by CX 2024-04-09
China factory Bw Oil Free Piston High Pressure Argon Booster Compressor 150bar with high quality
Product Description
Product Name | Oil-Free Booster Compressor |
Model No | BW-3/5/10/15/20/30… |
Inlet Pressure | 0.4Mpa( G ) |
Exhaust Pressure | 150/200Mpa( G ) |
Type | High Pressure Oil Free |
Accessories | Filling Manifold, Piston ring, Etc |
If you have compressor inquiry please tell us follows information when you send inquiry:
*Compressor working medium: If single gas ,how many purity ? if mixed gas , what’s gas content lit ?
*Suction pressure(gauge pressure):_____bar
*Exhaust pressure(gauge pressure):_____bar
*Flow rate per hour for compressor: _____Nm³/h
Compressor gas suction temperature:_____ºC
Compressor working hours per day :_____hours
Compressor working site altitude :_____m
Environment temperature : _____ºC
Has cooling water in the site or not ?______
Voltage and frequency for 3 phase :____________
Do not has water vapor or H2S in the gas ?______
Application for compressor?__________
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 1year |
---|---|
Warranty: | 1year |
Product Name: | Oxygen,Nitrogen Compressor |
Gas Type: | Oxygen,Nitrogen,Special Gas |
Cooling Method: | Air Cooling Water Cooling |
Application: | Filling Cylinder |
Customization: |
Available
|
|
---|
What Is the Typical Lifespan of a Gas Air Compressor?
The typical lifespan of a gas air compressor can vary depending on several factors, including the quality of the compressor, its usage patterns, maintenance practices, and environmental conditions. However, with proper care and maintenance, a gas air compressor can last for many years. Here’s a detailed explanation of the factors that can affect the lifespan of a gas air compressor:
1. Quality of the Compressor:
The quality and construction of the gas air compressor play a significant role in determining its lifespan. Compressors made with high-quality materials, precision engineering, and robust components are generally more durable and can withstand heavy usage over an extended period.
2. Usage Patterns:
The usage patterns of the gas air compressor can impact its lifespan. If the compressor is used consistently and for extended periods, it may experience more wear and tear compared to compressors used intermittently or for lighter tasks. Heavy-duty applications, such as continuous operation with high-demand tools, can put more strain on the compressor and potentially reduce its lifespan.
3. Maintenance Practices:
Regular maintenance is crucial for extending the lifespan of a gas air compressor. Following the manufacturer’s recommended maintenance schedule, performing routine tasks like oil changes, filter cleaning/replacement, and inspection of components can help prevent issues and ensure optimal performance. Neglecting maintenance can lead to accelerated wear and potential breakdowns.
4. Environmental Conditions:
The operating environment can significantly impact the lifespan of a gas air compressor. Factors such as temperature extremes, humidity levels, presence of dust or debris, and exposure to corrosive substances can affect the compressor’s components and overall performance. Compressors used in harsh environments may require additional protection or specialized maintenance to mitigate these adverse conditions.
5. Proper Installation and Operation:
Proper installation and correct operation of the gas air compressor are essential for its longevity. Following the manufacturer’s guidelines for installation, ensuring proper ventilation, maintaining correct oil levels, and operating within the compressor’s specified capacity and pressure limits can help prevent excessive strain and premature wear.
Considering these factors, a well-maintained gas air compressor can typically last anywhere from 10 to 15 years or even longer. However, it’s important to note that this is a general estimate, and individual results may vary. Some compressors may experience shorter lifespans due to heavy usage, inadequate maintenance, or other factors, while others may last well beyond the expected lifespan with proper care and favorable conditions.
Ultimately, investing in a high-quality gas air compressor, adhering to recommended maintenance practices, and using it within its intended capabilities can help maximize its lifespan and ensure reliable performance for an extended period.
Can Gas Air Compressors Be Used for Gas Line Maintenance?
Gas air compressors can be used for certain aspects of gas line maintenance, primarily for tasks that require compressed air. Here’s a detailed explanation:
1. Clearing Debris and Cleaning:
Gas air compressors can be utilized to clear debris and clean gas lines. Compressed air can be directed through the gas lines to dislodge and remove dirt, dust, rust particles, or other contaminants that may accumulate over time. This helps maintain the integrity and efficiency of the gas lines.
2. Pressure Testing:
Gas line maintenance often involves pressure testing to ensure the lines can withstand the required operating pressures. Gas air compressors can provide the necessary compressed air to pressurize the lines for testing purposes. By pressurizing the gas lines with compressed air, technicians can identify any leaks or weaknesses in the system.
3. Leak Detection:
Gas air compressors can also be used in conjunction with appropriate leak detection equipment to identify and locate gas leaks in the gas lines. Compressed air can be introduced into the lines, and the detection equipment can then identify any areas where the compressed air escapes, indicating a potential gas leak.
4. Valve and Equipment Maintenance:
Gas line maintenance may involve the inspection, maintenance, or replacement of valves and associated equipment. Compressed air can be used to clean and blow out debris from valves, purge lines, or assist in the disassembly and reassembly of components.
5. Pipe Drying:
Gas air compressors can aid in drying gas lines after maintenance or repairs. By blowing compressed air through the lines, any residual moisture can be removed, ensuring the gas lines are dry before being put back into service.
6. Precautions and Regulations:
When using gas air compressors for gas line maintenance, it is essential to follow safety precautions and adhere to relevant regulations. Gas line maintenance often involves working in hazardous environments, and proper training, equipment, and procedures must be followed to ensure the safety of personnel and the integrity of the gas system.
It is important to note that gas air compressors should not be used directly for pressurizing or transporting natural gas or other combustible gases. Gas line maintenance tasks involving gas air compressors primarily focus on using compressed air for specific maintenance and testing purposes, as outlined above.
In summary, gas air compressors can be useful for certain aspects of gas line maintenance, including clearing debris, pressure testing, leak detection, valve and equipment maintenance, and pipe drying. However, it is crucial to follow safety guidelines and regulations when working with gas lines and compressed air to ensure the safety and integrity of the gas system.
Can Gas Air Compressors Be Used in Remote Locations?
Yes, gas air compressors are well-suited for use in remote locations where access to electricity may be limited or unavailable. Their portability and reliance on gas engines make them an ideal choice for providing a reliable source of compressed air in such environments. Here’s a detailed explanation of how gas air compressors can be used in remote locations:
1. Independence from Electrical Grid:
Gas air compressors do not require a direct connection to the electrical grid, unlike electric air compressors. This independence from the electrical grid allows gas air compressors to be used in remote locations, such as wilderness areas, remote job sites, or off-grid locations, where it may be impractical or cost-prohibitive to establish electrical infrastructure.
2. Mobility and Portability:
Gas air compressors are designed to be portable and easy to transport. They are often equipped with handles, wheels, or trailers, making them suitable for remote locations. The gas engine powering the compressor provides mobility, allowing the compressor to be moved to different areas within the remote location as needed.
3. Fuel Versatility:
Gas air compressors can be fueled by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This fuel versatility ensures that gas air compressors can adapt to the available fuel sources in remote locations. For example, if gasoline or diesel is readily available, the gas air compressor can be fueled with these fuels. Similarly, if natural gas or propane is accessible, the compressor can be configured to run on these gases.
4. On-Site Power Generation:
In remote locations where electricity is limited, gas air compressors can serve as on-site power generators. They can power not only the compressor itself but also other equipment or tools that require electricity for operation. This versatility makes gas air compressors useful for a wide range of applications in remote locations, such as powering lights, tools, communication devices, or small appliances.
5. Off-Grid Operations:
Gas air compressors enable off-grid operations, allowing tasks and activities to be carried out in remote locations without relying on external power sources. This is particularly valuable in industries such as mining, oil and gas exploration, forestry, or construction, where operations may take place in remote and isolated areas. Gas air compressors provide the necessary compressed air for pneumatic tools, drilling equipment, and other machinery required for these operations.
6. Emergency Preparedness:
Gas air compressors are also beneficial for emergency preparedness in remote locations. In situations where natural disasters or emergencies disrupt the power supply, gas air compressors can provide a reliable source of compressed air for essential equipment and systems. They can power emergency lighting, communication devices, medical equipment, or backup generators, ensuring operational continuity in critical situations.
7. Adaptability to Challenging Environments:
Gas air compressors are designed to withstand various environmental conditions, including extreme temperatures, humidity, dust, and vibrations. This adaptability to challenging environments makes them suitable for use in remote locations, where environmental conditions may be harsh or unpredictable.
Overall, gas air compressors can be effectively used in remote locations due to their independence from the electrical grid, mobility, fuel versatility, on-site power generation capabilities, suitability for off-grid operations, emergency preparedness, and adaptability to challenging environments. These compressors provide a reliable source of compressed air, enabling a wide range of applications in remote settings.
editor by CX 2024-04-09