Product Description
High Pressure CO2 Compressor Factory Price for Filling Station
Design Character
100% oil free design, guide ring, piston ring, piston rod filler are self-lubricating material, bearing parts are high temperature resistant grease lubrication, to avoid the pollution of gas in the compression process, to ensure the purity of gas. The High Pressure CO2 Compressor is skidded in size, compact in weight, easy to maintain, low maintenance costs.
High Pressure CO2 Compressor is microcomputer controller control, with compressor exhaust temperature high, low intake pressure, high exhaust pressure alarm stop function, high automation level, compressor reliable operation. Data remote display and remote control can be configured according to customer requirements.
The High Pressure CO2 Compressor is widely used in hospital oxygen production center, plateau vehicle oxygen production system, and medical oxygen production related industries.
Product Specification
No. | Item | Data |
1 | Working medium | Oxygen |
2 | Model | WWZ-20/4-150 |
3 | Structure | oil free reciprocating |
4 | Pressure stage | 3 stage |
5 | Capacity | 20Nm3 |
6 | Inlet pressure | 3~4bar |
7 | Outlet pressure | 150bar |
7 | Number of compression stage | 3 |
8 | Number of cylinder | 3 |
9 | Cooling way | Water / Air |
10 | Motor power | 15kw |
11 | Motor power | Overload, stop automatic |
12 | External dimension | 1250X1571X850mm |
13 | Weight | 470kg |
Highlight of Oxygen Compressor
♣ Patented machine, new host design, high efficiency, no leakage, long life, low noise.
♣ Long Running time, set maintenance and convenient monitoring, and reserved remote control interface.
♣ The suction and exhaust ports of High Pressure CO2 Compressor is are equipped with slow impactor, and adopt the most advanced control system, to control the pressure of the suction and exhaust ports to avoid vacuuming.
Technical Feature
Strictly manufactured in accordance with High Pressure CO2 Compressor China national standards, with safety, reliability and other significant characteristics, no pollution to the compressed medium, and easy to operate, easy to maintain.
1 | Type | oil free, no lubrication reciprocating compressor |
2 | Cooling Way | air or water cooling |
3 | Structure | compact structure, reliable performance, low operation and maintenance cost |
4 | Power range | 1.5-45kw |
5 | Speed range | 400-860 rpm |
6 | Flow range | 2-300nm3 /h |
7 | Suction pressure range | 3~4bar |
8 | Exhaust pressure range | 150~300bar |
Successful Project
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Usage: | Hydrogen, Nitrogen, Oxygen, Ozone |
---|---|
Purpose: | Gas Filling |
Parts: | Valve |
Application Fields: | Medical |
Noise Level: | Low |
Machine Size: | Medium |
Samples: |
US$ 11010/Set
1 Set(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How Do You Troubleshoot Common Issues with Gas Air Compressors?
Troubleshooting common issues with gas air compressors involves identifying and addressing potential problems that may arise during operation. Here’s a detailed explanation of the troubleshooting process:
1. Start with Safety Precautions:
Prior to troubleshooting, ensure that the gas air compressor is turned off and disconnected from the power source. Follow proper safety procedures, such as wearing appropriate personal protective equipment (PPE), to avoid accidents or injuries.
2. Check Power Supply and Connections:
Verify that the compressor is receiving power and that all electrical connections are secure. Inspect the power cord, plug, and any switches or controls to ensure they are functioning properly. If the compressor is equipped with a battery, check its charge level and connections.
3. Check Fuel Supply:
For gas air compressors that use gasoline or propane, ensure that there is an adequate fuel supply. Check the fuel tank level and verify that the fuel shut-off valve is open. If the compressor has been sitting idle for an extended period, old or stale fuel may cause starting issues. Consider draining and replacing the fuel if necessary.
4. Inspect Air Filters:
Dirty or clogged air filters can restrict airflow and affect the compressor’s performance. Check the intake air filters and clean or replace them as needed. Clogged filters can be cleaned with compressed air or washed with mild detergent and water, depending on the type of filter.
5. Check Oil Level and Quality:
If the gas air compressor has an engine with an oil reservoir, verify the oil level using the dipstick or oil level indicator. Insufficient oil can lead to engine damage or poor performance. Additionally, check the oil quality to ensure it is clean and within the recommended viscosity range. If needed, change the oil following the manufacturer’s guidelines.
6. Inspect Spark Plug:
If the gas air compressor uses a spark plug ignition system, inspect the spark plug for signs of damage or fouling. Clean or replace the spark plug if necessary, following the manufacturer’s recommendations for gap setting and torque.
7. Check Belts and Pulleys:
Inspect the belts and pulleys that drive the compressor pump. Loose or worn belts can cause slippage and affect the compressor’s performance. Tighten or replace any damaged belts, and ensure that the pulleys are properly aligned.
8. Listen for Unusual Noises:
During operation, listen for any unusual or excessive noises, such as grinding, rattling, or squealing sounds. Unusual noises could indicate mechanical issues, loose components, or improper lubrication. If identified, consult the compressor’s manual or contact a qualified technician for further inspection and repair.
9. Consult the Owner’s Manual:
If troubleshooting steps do not resolve the issue, refer to the compressor’s owner’s manual for specific troubleshooting guidance. The manual may provide additional troubleshooting steps, diagnostic charts, or recommended maintenance procedures.
10. Seek Professional Assistance:
If the issue persists or if you are unsure about performing further troubleshooting steps, it is recommended to seek assistance from a qualified technician or contact the manufacturer’s customer support for guidance.
Remember to always prioritize safety and follow proper maintenance practices to prevent issues and ensure the reliable performance of the gas air compressor.
What Is the Impact of Altitude on Gas Air Compressor Performance?
Altitude can have a significant impact on the performance of gas air compressors. Here’s a detailed explanation:
1. Decreased Air Density:
As altitude increases, the air density decreases. This reduction in air density affects the performance of gas air compressors, primarily because compressors rely on the intake of ambient air to generate compressed air. With lower air density at higher altitudes, the compressor’s ability to draw in a sufficient volume of air is reduced.
2. Reduced Compressor Output:
The decrease in air density directly affects the compressor’s output. Gas air compressors may experience a decrease in their maximum airflow and pressure capabilities at higher altitudes. This reduction in output can impact the compressor’s efficiency and its ability to deliver the required compressed air for various applications.
3. Increased Compressor Workload:
At higher altitudes, gas air compressors need to work harder to maintain the desired level of compressed air output. The reduced air density means the compressor must compress a larger volume of air to achieve the same pressure as it would at lower altitudes. This increased workload can lead to higher energy consumption, increased wear and tear on the compressor components, and potentially decreased overall performance and lifespan.
4. Engine Power Loss:
If the gas air compressor is powered by an internal combustion engine (such as gasoline or diesel), altitude can also impact the engine’s performance. As the air density decreases, the engine may experience a power loss due to reduced oxygen availability for combustion. This can result in reduced engine horsepower and torque, affecting the compressor’s ability to generate compressed air.
5. Considerations for Proper Sizing:
When selecting a gas air compressor for use at higher altitudes, it is crucial to consider the specific altitude conditions and adjust the compressor’s size and capacity accordingly. Choosing a compressor with a higher airflow and pressure rating than required at sea level can help compensate for the reduced performance at higher altitudes.
6. Maintenance and Adjustments:
Regular maintenance and adjustments are necessary to optimize the performance of gas air compressors operating at higher altitudes. This includes monitoring and adjusting the compressor’s intake systems, fuel-to-air ratio, and ignition timing to account for the reduced air density and maintain proper combustion efficiency.
In summary, altitude has a notable impact on the performance of gas air compressors. The decrease in air density at higher altitudes leads to reduced compressor output, increased compressor workload, potential engine power loss, and considerations for proper sizing and maintenance. Understanding these effects is crucial for selecting and operating gas air compressors effectively in various altitude conditions.
What Safety Precautions Should Be Taken When Operating Gas Air Compressors?
Operating gas air compressors safely is essential to prevent accidents, injuries, and equipment damage. It’s important to follow proper safety precautions to ensure a safe working environment. Here’s a detailed explanation of the safety precautions that should be taken when operating gas air compressors:
1. Read and Follow the Manufacturer’s Instructions:
Before operating a gas air compressor, carefully read and understand the manufacturer’s instructions, user manual, and safety guidelines. Follow the recommended procedures, maintenance schedules, and any specific instructions provided by the manufacturer.
2. Provide Adequate Ventilation:
Gas air compressors generate exhaust fumes and heat during operation. Ensure that the operating area is well-ventilated to prevent the accumulation of exhaust gases, which can be harmful or even fatal in high concentrations. If operating indoors, use ventilation systems or open windows and doors to allow fresh air circulation.
3. Wear Personal Protective Equipment (PPE):
Wear appropriate personal protective equipment (PPE) when operating a gas air compressor. This may include safety glasses, hearing protection, gloves, and sturdy footwear. PPE helps protect against potential hazards such as flying debris, noise exposure, and hand injuries.
4. Perform Regular Maintenance:
Maintain the gas air compressor according to the manufacturer’s recommendations. Regularly inspect the compressor for any signs of wear, damage, or leaks. Keep the compressor clean and free from debris. Replace worn-out parts and components as needed to ensure safe and efficient operation.
5. Preventive Measures for Fuel Handling:
If the gas air compressor is powered by fuels such as gasoline, diesel, or propane, take appropriate precautions for fuel handling:
- Store fuel in approved containers and in well-ventilated areas away from ignition sources.
- Refuel the compressor in a well-ventilated outdoor area, following proper refueling procedures and avoiding spills.
- Handle fuel with caution, ensuring that there are no fuel leaks or spills near the compressor.
- Never smoke or use open flames near the compressor or fuel storage areas.
6. Use Proper Electrical Connections:
If the gas air compressor requires electrical power, follow these electrical safety precautions:
- Ensure that the electrical connections and wiring are properly grounded and in compliance with local electrical codes.
- Avoid using extension cords unless recommended by the manufacturer.
- Inspect electrical cords and plugs for damage before use.
- Do not overload electrical circuits or use improper voltage sources.
7. Secure the Compressor:
Ensure that the gas air compressor is securely positioned and stable during operation. Use appropriate mounting or anchoring methods, especially for portable compressors. This helps prevent tipping, vibrations, and movement that could lead to accidents or injuries.
8. Familiarize Yourself with Emergency Procedures:
Be familiar with emergency procedures and know how to shut off the compressor quickly in case of an emergency or malfunction. Have fire extinguishers readily available and know how to use them effectively. Develop an emergency action plan and communicate it to all personnel working with or around the compressor.
It’s crucial to prioritize safety when operating gas air compressors. By following these safety precautions and using common sense, you can minimize the risks associated with compressor operation and create a safer work environment for yourself and others.
editor by CX 2024-04-25
China high quality Compressor for Oxygen Generator Best Price with Manufacture Direct Sales manufacturer
Product Description
Compressor for Oxygen Generator Best Price with Manufacture Direct Sales
Outline
Compressor for Oxygen Generator is an oil-free reciprocating piston compressor developed by our company. Compressor for Oxygen Generator has the characteristics of low energy consumption, low noise, low vibration, high reliability and easy operation.
Compressor for Oxygen Generator is mainly composed by compressor host, motor, public chassis, gas path system, cooling system, lubrication system, instrument operating system, sewage system, electrical system and so on. All parts are installed on a public chassis, the public chassis is installed on the cement foundation plane, is a fixed gas supply station. The connecting pipes between the equipment and the fixed points between the equipment and the base are detachable, so the compressor is easy to transport, install, operate and maintain.
Main Technical Parameters
Compressor for Oxygen Generator main technical parameters:
1 | Compressor model | WWZ-30/4-150 |
2 | Compressor type | W type, reciprocating piston, water cooled, air cooled |
3 | Compressor type | oxygen |
4 | Volume flow | 30nm3/h |
5 | Intake pressure | 4bar |
6 | Exhaust pressure | 150bar |
7 | Inlet temperature | ≤40ºC |
8 | Exhaust temperature | no more than ambient temperature +15ºC after cooling |
9 | Driving mode | explosion-proof motor |
10 | External size (length × width × height) | 1600X1100X1100 |
11 | Weight | 550kg |
Why Choose Us
*We will answer calls and receive consultation documents from customer politely and earnestly, to know exactly about customers’ site situation and technical requirements, and record all data in detail.
*We will carefully analyze the information supplied by customers, to provide catalog and technical proposal in time.
*We will contact customers regularly, actually knowing about the progress, thus can provide reasonable suggestions, to help customers reducing costs.
*We sincerely invite customers to visit our company, participating in technical discussion, to determine the best solution.
*If any trouble occurred during the equipment running period, our technicians will communicate with customers and help solve the problem in time.
*We will send technicians to help customers install, debug the equipment and train workers, until the workers are familiar with the operation, technical principle and simple maintenance of the system.
*All the equipment has 18-month warranty from delivery date.
*During the equipment running period, we will contact customers and ask for feedback regularly.
Product Presentation
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Usage: | Hydrogen, Nitrogen, Oxygen, Ozone |
---|---|
Purpose: | Gas Filling |
Parts: | Valve |
Application Fields: | Medical |
Noise Level: | Low |
Machine Size: | Medium |
Samples: |
US$ 7400/Set
1 Set(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can Gas Air Compressors Be Used in Cold Weather Conditions?
Gas air compressors are generally designed to operate in a wide range of environmental conditions, including cold weather. However, there are certain considerations and precautions to keep in mind when using gas air compressors in cold weather conditions. Here’s a detailed explanation:
1. Cold Start-Up:
In cold weather, starting a gas air compressor can be more challenging due to the low temperatures affecting the engine’s performance. It is important to follow the manufacturer’s recommendations for cold start procedures, which may include preheating the engine, using a cold weather starting aid, or ensuring the proper fuel mixture. These measures help facilitate smooth start-up and prevent potential damage to the engine.
2. Fuel Type:
Consider the type of fuel used in the gas air compressor. Some fuels, such as gasoline, can be more susceptible to cold weather issues like vapor lock or fuel line freezing. In extremely cold conditions, it may be necessary to use a fuel additive or switch to a fuel type that is better suited for cold weather operation, such as winter-grade gasoline or propane.
3. Lubrication:
Cold temperatures can affect the viscosity of the oil used in the compressor’s engine. It is important to use the recommended oil grade suitable for cold weather conditions. Thicker oil can become sluggish and impede proper lubrication, while oil that is too thin may not provide adequate protection. Consult the manufacturer’s guidelines for the appropriate oil viscosity range for cold weather operation.
4. Moisture Management:
In cold weather, moisture can condense more readily in the compressed air system. It is crucial to properly drain the moisture from the compressor tank and ensure the air lines are free from any accumulated moisture. Failure to manage moisture can lead to corrosion, freezing of air lines, and decreased performance.
5. Protection from Freezing:
In extremely cold conditions, it is important to protect the gas air compressor from freezing. This may involve using insulated covers or enclosures, providing heat sources in the compressor area, or storing the compressor in a temperature-controlled environment when not in use. Taking measures to prevent freezing helps maintain proper operation and prevents potential damage to the compressor components.
6. Monitoring Performance:
Regularly monitor the performance of the gas air compressor in cold weather conditions. Pay attention to any changes in operation, such as reduced air pressure, increased noise, or difficulties in starting. Promptly address any issues and consult the manufacturer or a qualified technician if necessary.
By considering these factors and taking appropriate precautions, gas air compressors can be effectively used in cold weather conditions. However, it is important to consult the specific guidelines provided by the manufacturer for your compressor model, as they may have additional recommendations or specifications for cold weather operation.
Can Gas Air Compressors Be Used for Pneumatic Tools?
Yes, gas air compressors can be used for pneumatic tools. Here’s a detailed explanation:
1. Versatile Power Source:
Gas air compressors, powered by gasoline or diesel engines, provide a portable and versatile power source for operating pneumatic tools. They eliminate the need for electrical power supply, making them suitable for remote locations or construction sites where electricity may not be readily available.
2. High Power Output:
Gas air compressors typically offer higher power output compared to electric compressors of similar size. This high power output enables gas compressors to deliver the necessary air pressure and volume required by pneumatic tools, ensuring optimal tool performance.
3. Mobility and Portability:
Gas air compressors are often designed with mobility and portability in mind. They are compact and equipped with wheels or handles, allowing for easy transportation to different job sites. This mobility is advantageous when using pneumatic tools in various locations or when working in confined spaces.
4. Continuous Operation:
Gas air compressors can provide continuous air supply for pneumatic tools without the need for frequent pauses or recharging. As long as there is an adequate fuel supply, gas compressors can operate for extended periods, allowing uninterrupted use of pneumatic tools for tasks such as drilling, nailing, sanding, or painting.
5. Suitable for High-Demand Applications:
Pneumatic tools used in heavy-duty applications often require a robust air supply to meet their performance requirements. Gas air compressors can generate higher air flow rates and maintain higher operating pressures, making them suitable for high-demand pneumatic tools like jackhammers, impact wrenches, or sandblasters.
6. Flexibility in Compressor Size:
Gas air compressors are available in various sizes and capacities, allowing users to choose the compressor that best matches the air demands of their pneumatic tools. From small portable compressors for light-duty tasks to larger industrial-grade compressors for heavy-duty applications, there is a wide range of options to suit different tool requirements.
7. Reduced Dependency on Electrical Infrastructure:
Using gas air compressors for pneumatic tools reduces reliance on electrical infrastructure. In situations where the electrical power supply is limited, unreliable, or expensive, gas compressors offer a viable alternative, ensuring consistent tool performance without concerns about power availability.
It’s important to note that gas air compressors emit exhaust gases during operation, so proper ventilation is necessary when using them in enclosed spaces to ensure the safety of workers.
In summary, gas air compressors can effectively power pneumatic tools, offering mobility, high power output, continuous operation, and suitability for various applications. They provide a reliable and portable solution for utilizing pneumatic tools in locations where electrical power supply may be limited or unavailable.
What Is a Gas Air Compressor?
A gas air compressor is a type of air compressor that is powered by a gas engine instead of an electric motor. It uses a combustion engine, typically fueled by gasoline or diesel, to convert fuel energy into mechanical energy, which is then used to compress air. Here’s a detailed explanation of a gas air compressor:
1. Power Source:
A gas air compressor utilizes a gas engine as its power source. The engine can be fueled by gasoline, diesel, or other types of combustible gases, such as natural gas or propane. The combustion engine drives the compressor pump to draw in air and compress it to a higher pressure.
2. Portable and Versatile:
Gas air compressors are often designed to be portable and versatile. The gas engine provides mobility, allowing the compressor to be easily transported and used in different locations, including remote job sites or areas without access to electricity. This makes gas air compressors suitable for applications such as construction projects, outdoor activities, and mobile service operations.
3. Compressor Pump:
The compressor pump in a gas air compressor is responsible for drawing in air and compressing it. The pump can be of various types, including reciprocating, rotary screw, or centrifugal, depending on the specific design of the gas air compressor. The pump’s role is to increase the pressure of the incoming air, resulting in compressed air that can be used for various applications.
4. Pressure Regulation:
Gas air compressors typically feature pressure regulation mechanisms to control the output pressure of the compressed air. This allows users to adjust the pressure according to the requirements of the specific application. The pressure regulation system may include pressure gauges, regulators, and safety valves to ensure safe and reliable operation.
5. Applications:
Gas air compressors find applications in a wide range of industries and activities. They are commonly used in construction sites for powering pneumatic tools such as jackhammers, nail guns, and impact wrenches. Gas air compressors are also utilized in agriculture for operating air-powered machinery like sprayers and pneumatic seeders. Additionally, they are employed in recreational activities such as inflating tires, sports equipment, or inflatable structures.
6. Maintenance and Fuel Considerations:
Gas air compressors require regular maintenance, including engine servicing, oil changes, and filter replacements, to ensure optimal performance and longevity. The type of fuel used in the gas engine also needs to be considered. Gasoline-powered compressors are commonly used in smaller applications, while diesel-powered compressors are preferred for heavy-duty and continuous operation due to their higher fuel efficiency and durability.
Overall, a gas air compressor is an air compressor that is powered by a gas engine, offering mobility and versatility. It provides compressed air for various applications and is commonly used in construction, agriculture, and outdoor activities. Regular maintenance and fuel considerations are essential to ensure reliable operation and optimal performance.
editor by CX 2024-04-24
China high quality 300bar High Pressure Scuba Diving Breathing Tank Portable Air Compressor Rkh-100e for Sale mini air compressor
Product Description
Product Description
300bar High Pressure Scuba Diving Breathing Tank Portable Air Compressor RKH-100E for Sale
Model | RKH-100E |
Flow rate | 100 L/min |
Inlet pressure | atmosphere |
Outlet pressure | 200bar/3000psi |
Max working pressure | 300bar/4500psi |
Electric Motor/Petrol engine | Motor 2.2kw 3hp |
Cooling method | Air |
Oil/moisture separator | 1 after last stage |
Noise level | ≤ 73 dB(A) |
Dimension | 710*400*380mm |
Net Weight | 48kg |
Features:
30 MPa RK100 Fire Air Respirator Inflator Pump
Four-stage compression, air-cooled, piston air compressor
Equipped with high-strength nylon cooling fan
The pressure of the high-pressure safety valve is freely regulated to ensure absolute safety in use
High-tech treatment of wear-resistant CMC alloy cylinders, pistons, crankshafts and other components to ensure long-term load requirements
Assemble manual blowdown valve
The drive mode includes 380V/220V motor (explosion-proof motor), gasoline engine (for field use without power supply) for users to choose freely
Designed with a set of inflation valve, connector and inflation tube
Equipped with a shock-proof pressure gauge, the purification system is activated carbon and molecular sieve to ensure that the gas is pure, high-quality and safe.
Packaging & Shipping
Company Profile
FAQ
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of screw air compressor of HangZhou,ZheJiang ,China. More than 18 years of experience in air compressor manufacturing.
Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.
Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.
Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3.CHINAMFG agents and after service avaiable.arrange our engineers to help you training and installation.
Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.
Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.
Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.
Q8. How do you control quality ?
A: 1. The raw materials are strictly inspected
2. Some key parts are imported from overseas
3. Each compressor must pass at least 5 hours of continuous testing before leaving the factory.
Q9. Do you offer OEM service ?
A: Yes.Both OEM & ODM service can be accepted.
Q10.How long could your air compressor be used?
A: Generally, more than 10 years.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Support |
---|---|
Warranty: | 24months |
Lubrication Style: | Oil-free |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can Gas Air Compressors Be Used in Cold Weather Conditions?
Gas air compressors are generally designed to operate in a wide range of environmental conditions, including cold weather. However, there are certain considerations and precautions to keep in mind when using gas air compressors in cold weather conditions. Here’s a detailed explanation:
1. Cold Start-Up:
In cold weather, starting a gas air compressor can be more challenging due to the low temperatures affecting the engine’s performance. It is important to follow the manufacturer’s recommendations for cold start procedures, which may include preheating the engine, using a cold weather starting aid, or ensuring the proper fuel mixture. These measures help facilitate smooth start-up and prevent potential damage to the engine.
2. Fuel Type:
Consider the type of fuel used in the gas air compressor. Some fuels, such as gasoline, can be more susceptible to cold weather issues like vapor lock or fuel line freezing. In extremely cold conditions, it may be necessary to use a fuel additive or switch to a fuel type that is better suited for cold weather operation, such as winter-grade gasoline or propane.
3. Lubrication:
Cold temperatures can affect the viscosity of the oil used in the compressor’s engine. It is important to use the recommended oil grade suitable for cold weather conditions. Thicker oil can become sluggish and impede proper lubrication, while oil that is too thin may not provide adequate protection. Consult the manufacturer’s guidelines for the appropriate oil viscosity range for cold weather operation.
4. Moisture Management:
In cold weather, moisture can condense more readily in the compressed air system. It is crucial to properly drain the moisture from the compressor tank and ensure the air lines are free from any accumulated moisture. Failure to manage moisture can lead to corrosion, freezing of air lines, and decreased performance.
5. Protection from Freezing:
In extremely cold conditions, it is important to protect the gas air compressor from freezing. This may involve using insulated covers or enclosures, providing heat sources in the compressor area, or storing the compressor in a temperature-controlled environment when not in use. Taking measures to prevent freezing helps maintain proper operation and prevents potential damage to the compressor components.
6. Monitoring Performance:
Regularly monitor the performance of the gas air compressor in cold weather conditions. Pay attention to any changes in operation, such as reduced air pressure, increased noise, or difficulties in starting. Promptly address any issues and consult the manufacturer or a qualified technician if necessary.
By considering these factors and taking appropriate precautions, gas air compressors can be effectively used in cold weather conditions. However, it is important to consult the specific guidelines provided by the manufacturer for your compressor model, as they may have additional recommendations or specifications for cold weather operation.
Can Gas Air Compressors Be Used for Gas Line Maintenance?
Gas air compressors can be used for certain aspects of gas line maintenance, primarily for tasks that require compressed air. Here’s a detailed explanation:
1. Clearing Debris and Cleaning:
Gas air compressors can be utilized to clear debris and clean gas lines. Compressed air can be directed through the gas lines to dislodge and remove dirt, dust, rust particles, or other contaminants that may accumulate over time. This helps maintain the integrity and efficiency of the gas lines.
2. Pressure Testing:
Gas line maintenance often involves pressure testing to ensure the lines can withstand the required operating pressures. Gas air compressors can provide the necessary compressed air to pressurize the lines for testing purposes. By pressurizing the gas lines with compressed air, technicians can identify any leaks or weaknesses in the system.
3. Leak Detection:
Gas air compressors can also be used in conjunction with appropriate leak detection equipment to identify and locate gas leaks in the gas lines. Compressed air can be introduced into the lines, and the detection equipment can then identify any areas where the compressed air escapes, indicating a potential gas leak.
4. Valve and Equipment Maintenance:
Gas line maintenance may involve the inspection, maintenance, or replacement of valves and associated equipment. Compressed air can be used to clean and blow out debris from valves, purge lines, or assist in the disassembly and reassembly of components.
5. Pipe Drying:
Gas air compressors can aid in drying gas lines after maintenance or repairs. By blowing compressed air through the lines, any residual moisture can be removed, ensuring the gas lines are dry before being put back into service.
6. Precautions and Regulations:
When using gas air compressors for gas line maintenance, it is essential to follow safety precautions and adhere to relevant regulations. Gas line maintenance often involves working in hazardous environments, and proper training, equipment, and procedures must be followed to ensure the safety of personnel and the integrity of the gas system.
It is important to note that gas air compressors should not be used directly for pressurizing or transporting natural gas or other combustible gases. Gas line maintenance tasks involving gas air compressors primarily focus on using compressed air for specific maintenance and testing purposes, as outlined above.
In summary, gas air compressors can be useful for certain aspects of gas line maintenance, including clearing debris, pressure testing, leak detection, valve and equipment maintenance, and pipe drying. However, it is crucial to follow safety guidelines and regulations when working with gas lines and compressed air to ensure the safety and integrity of the gas system.
What Industries Commonly Use Gas Air Compressors?
Gas air compressors find applications in various industries where compressed air is required for powering tools, equipment, and systems. These compressors are valued for their portability, versatility, and ability to provide high-pressure air. Here’s a detailed explanation of the industries that commonly use gas air compressors:
1. Construction Industry:
The construction industry extensively utilizes gas air compressors for a wide range of tasks. Compressed air is used to power pneumatic tools such as jackhammers, nail guns, impact wrenches, and concrete breakers. Gas air compressors provide the necessary airflow and pressure to operate these tools efficiently, making them ideal for construction sites.
2. Mining Industry:
In the mining industry, gas air compressors play a vital role in various operations. Compressed air is used to power pneumatic tools for drilling, rock blasting, and excavation. It is also employed in ventilation systems, conveying systems, and pneumatic control devices in mines. Gas air compressors are valued for their durability and ability to operate in rugged and remote mining environments.
3. Oil and Gas Industry:
The oil and gas industry relies on gas air compressors for numerous applications. They are used for well drilling operations, powering pneumatic tools, and maintaining pressure in oil and gas pipelines. Gas air compressors are also utilized in natural gas processing plants, refineries, and petrochemical facilities for various pneumatic processes and equipment.
4. Manufacturing and Industrial Sector:
In the manufacturing and industrial sector, gas air compressors are extensively used in different applications. They provide compressed air for pneumatic tools, such as air-powered drills, sanders, grinders, and spray guns. Compressed air is also used in manufacturing processes such as material handling, assembly line operations, and pneumatic control systems.
5. Automotive Industry:
The automotive industry utilizes gas air compressors for a variety of tasks. Compressed air is employed in automotive assembly plants for pneumatic tools, paint spraying booths, and pneumatic control systems. Gas air compressors are also used in auto repair shops for powering air tools, tire inflation, and operating pneumatic lifts.
6. Agriculture and Farming:
Gas air compressors have applications in the agriculture and farming sector. They are used for tasks such as powering pneumatic tools for crop irrigation, operating pneumatic seeders or planters, and providing compressed air for farm maintenance and repair work. Portable gas air compressors are particularly useful in agricultural settings where electricity may not be readily available.
7. Food and Beverage Industry:
In the food and beverage industry, gas air compressors are employed for various pneumatic processes and equipment. They are used in food packaging operations, pneumatic conveying systems for ingredients and finished products, and air-powered mixing and blending processes. Gas air compressors in this industry are designed to meet strict hygiene and safety standards.
8. Pharmaceutical and Healthcare Sector:
The pharmaceutical and healthcare sector utilizes gas air compressors for critical applications. Compressed air is used in medical devices, dental equipment, laboratory instruments, and pharmaceutical manufacturing processes. Gas air compressors in this industry must adhere to stringent quality standards and maintain air purity.
These are just a few examples of the industries that commonly use gas air compressors. Other sectors, such as power generation, aerospace, marine, and chemical industries, also rely on gas air compressors for specific applications. The versatility and reliability of gas air compressors make them indispensable in numerous industries where compressed air is a vital resource.
editor by CX 2024-04-24
China Professional High Quality 4m3/M Industrial High Pressure Air Compressor air compressor for car
Product Description
High-Pressure Booster Compressor
Product Description
WOBO is a leading domestic manufacturer and seller of compressors, high-pressure air compressors, and breathing air compressors. WOBO products are known for their exquisite craftsmanship, excellent quality, reasonable prices, and customer-friendly after-sales service. They are widely acclaimed and favored by a broad range of users, with applications spHangZhou various fields such as firefighting, sports, aerospace, petroleum, pharmaceuticals, maritime, marine engineering, airtightness testing, power generation, gas supply, precision instruments, and industrial sectors. WOBO provides high-quality, pure, and safe compressed air for any industry that requires a reliable source of compressed air.
Product Type
Product Parameters
Marine High-Pressure Air Compressor
Model | WBW200 | WBW265 | WBW300 |
Type | Three-Stage Piston | Three-Stage Piston | Three-Stage Piston |
Displacement (1/min) | 200 | 265 | 300 |
Pressure (MPa) | 30 | 30 | 30 |
Drive (V) | 380 | 380 | 380 |
Power (kW) | 4 | 5.5 | 7.5 |
Noise (dB) | <79 | <79 | <79 |
Weight (kg) | 150 | 158 | 160 |
Dimensions (cm) | 100*56*62 | 100*56*64 | 100*56*62 |
It’s mainly used for safety testing in CNG vehicle systems, including natural gas cylinders, pressure regulators, and valves. This compressor ensures safety by detecting leaks and conducting pressure tests, making it valuable in various industries requiring high-pressure air.
High-Pressure Air Compressor
Model | WBX100A | WBX100B | WBX100C |
Type | Four-Stage Piston | Four-Stage Piston | Four-Stage Piston |
Displacement (1/min) | 100 | 100 | 100 |
Pressure (MPa) | 30 | 20 | 30 |
Drive (V) | 380 | 220 | Imported gasoline engine |
Power (kW) | 2.2 | 2.2 | 5.5HP |
Noise (dB) | <78 | <78 | <79 |
Weight (kg) | 42 | 42 | 45 |
Dimensions (cm) | 67*39*40 | 67*39*40 | 74*39*40 |
A high-pressure air compressor is a compact and portable gas supply device designed for pressurizing air. It offers advantages such as a compact structure, small size, light weight, easy maintenance, user-friendliness, and the delivery of pure compressed air. As a machine used to increase gas pressure or transport gas, it takes free-flowing air and compresses it into compressed air at a gauge pressure of 20 megapascals. This compressed air passes through a separator and filter within the unit, removing oil and impurities from the high-pressure air, resulting in clean and odorless discharged gas. This ensures a reliable source of high-pressure air and finds wide applications in various fields, including diving, firefighting, and offshore fishing operations, both domestically and internationally.
Piston-Type Compressor
Model | Type | Displacement (1/min) | Pressure (MPa) | Drive (V) | Power (kW) | Noise (dB) | Weight (kg) | Dimensions (cm) |
HS-10/150 | Four-Stage Piston | 10 | 15 | 380 | 185 | 980 | 4500 | 5000*2200*2300 |
HS-10/200 | Four-Stage Piston | 10 | 20 | 380 | 185 | 980 | 4500 | 5000*2200*2300 |
HS-10/250 | Four-Stage Piston | 10 | 25 | 380 | 185 | 980 | 4500 | 5000*2200*2300 |
HS-4/150 | Four-Stage Piston | 4 | 15 | 380 | 75 | 980 | 2200 | 2800*1500*1400 |
HS-4/200 | Four-Stage Piston | 4 | 20 | 380 | 75 | 980 | 2200 | 2800*1500*1400 |
HS-4/250 | Four-Stage Piston | 4 | 25 | 380 | 75 | 980 | 2200 | 2800*1500*1400 |
HS-3/150 | Four-Stage Piston | 3 | 15 | 380 | 75 | 980 | 2000 | 2800*1500*1400 |
HS-3/200 | Four-Stage Piston | 3 | 20 | 380 | 75 | 980 | 2000 | 2800*1500*1400 |
HS-3/250 | Four-Stage Piston | 3 | 25 | 380 | 75 | 980 | 2000 | 2800*1500*1400 |
HS-1.5/150 | Four-Stage Piston | 1.5 | 15 | 380 | 30 | 980 | 900 | 1850*1200*1300 |
HS-1.5/200 | Four-Stage Piston | 1.5 | 20 | 380 | 30 | 980 | 900 | 1850*1200*1300 |
HS-1.5/250 | Four-Stage Piston | 1.5 | 25 | 380 | 30 | 980 | 900 | 1850*1200*1300 |
A piston-type compressor is a comprehensive system comprising a compressor, an electric motor, a pipeline network, an operational system, electrical components, and auxiliary equipment. It plays a pivotal role in various applications like pipeline testing, well logging, air lifting in the oil and gas industry, as well as membrane nitrogen generation, thermal recovery, and downhole gas injection. This versatile equipment finds utility across diverse sectors such as coal, petroleum, industrial settings, and gas stations. It boasts exceptional performance and a high degree of automation.
Product Applications
1. High-pressure output: They produce gas for high-pressure devices.
2. Efficiency: They’re designed to minimize energy consumption.
3. Reliability: These compressors are durable and require minimal maintenance.
4. Versatile: They work with various gases and applications.
5. Precision: They offer precise pressure control.
6. Efficiency: They reduce gas leaks, improving transfer efficiency.
7. Versatile: Used in tools, gas storage, and more.
8. Safety: Multiple safety features protect operators and equipment.
9. Eco-friendly: Some models are designed to be quiet, low-vibration, and have reduced emissions for a smaller environmental footprint.
Applications
Project Case
Company Profile
WOBO has a comprehensive marketing service system and strong continuous research and development capabilities. Its products cover more than 30 types of gas chemical compressors, including oil free lubrication air compressors, oxygen compressors, nitrogen compressors, hydrogen compressors, carbon dioxide compressors, helium compressors, argon compressors, sulfur hexafluoride compressors, etc. The maximum pressure can reach 35Mpa. The products are widely used in petrochemical, textile, food, medicine, electricity, machinery, metallurgy, etc, In various fields such as home appliances and environmental protection, our company’s multiple wind brand oil-free compressors have been exported to more than 40 countries and regions in Europe, America, Japan, South Korea, Southeast Asia, the Middle East, and Africa, winning widespread praise from many customers. The WOBO brand has established a good quality reputation in the hearts of users.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Support, Video Technical Support |
---|---|
Warranty: | 1 Year |
Lubrication Style: | Oil-free |
Cooling System: | Air or Water Cooling |
Cylinder Arrangement: | Balanced Opposed Arrangement |
Cylinder Position: | Vertical |
Samples: |
US$ 5700/Unit
1 Unit(Min.Order) | |
---|
Customization: |
Available
|
|
---|
Can Gas Air Compressors Be Used for High-Pressure Applications?
Gas air compressors can be used for high-pressure applications, but there are certain considerations to keep in mind. Here’s a detailed explanation:
Gas air compressors are available in various sizes and configurations, and their suitability for high-pressure applications depends on factors such as the compressor’s design, power output, and the specific requirements of the application. Here are some key points to consider:
1. Compressor Design:
Not all gas air compressors are designed to handle high-pressure applications. Some compressors are specifically built for low-to-medium pressure ranges, while others are designed to deliver higher pressure outputs. It is important to select a gas air compressor model that is rated for the desired pressure range. The compressor’s specifications and manufacturer’s guidelines will provide information on the maximum pressure it can generate.
2. Power Output:
The power output of a gas air compressor is a crucial factor in determining its suitability for high-pressure applications. High-pressure compressors require more power to achieve and sustain the desired pressure levels. It is important to ensure that the gas air compressor has sufficient power output to meet the demands of the specific high-pressure application.
3. Cylinder Configuration:
The cylinder configuration of the gas air compressor can also affect its ability to handle high-pressure applications. Compressors with multiple cylinders or stages are designed to generate higher pressures compared to compressors with a single cylinder. Multi-stage compressors compress the air in multiple steps, allowing for higher pressure ratios.
4. Safety Considerations:
High-pressure applications require careful attention to safety considerations. Gas air compressors used for high-pressure applications should be equipped with appropriate safety features such as pressure relief valves, pressure gauges, and safety shut-off systems. It is crucial to follow all safety guidelines and regulations to ensure safe operation.
5. Maintenance and Inspection:
Regular maintenance and inspection are essential for gas air compressors used in high-pressure applications. High-pressure operation can put additional stress on the compressor components, and proper maintenance helps ensure optimal performance and safety. Regular inspections and adherence to maintenance schedules will help identify and address any potential issues before they become major problems.
6. Application-specific Considerations:
Each high-pressure application may have specific requirements and considerations. It is important to evaluate factors such as the required pressure level, duty cycle, flow rate, and any specific environmental conditions that may impact the performance of the gas air compressor. Consulting with the compressor manufacturer or a qualified professional can help determine the suitability of a gas air compressor for a particular high-pressure application.
In summary, gas air compressors can be used for high-pressure applications, provided that they are designed, rated, and configured appropriately. It is essential to consider factors such as compressor design, power output, safety features, maintenance requirements, and application-specific considerations to ensure safe and reliable operation at high pressures.
Can Gas Air Compressors Be Used for Sandblasting?
Yes, gas air compressors can be used for sandblasting. Sandblasting is a process that involves propelling abrasive materials, such as sand or grit, at high speeds to clean, etch, or prepare surfaces. Here’s a detailed explanation:
1. Compressed Air Requirement:
Sandblasting requires a reliable source of compressed air to propel the abrasive material. Gas air compressors, particularly those powered by gasoline or diesel engines, can provide the necessary compressed air for sandblasting operations. The compressors supply a continuous flow of compressed air at the required pressure to propel the abrasive material through the sandblasting equipment.
2. Portable and Versatile:
Gas air compressors are often portable and can be easily transported to different job sites, making them suitable for sandblasting applications in various locations. The portability of gas air compressors allows flexibility and convenience, especially when sandblasting needs to be performed on large structures, such as buildings, tanks, or bridges.
3. Pressure and Volume:
When selecting a gas air compressor for sandblasting, it is essential to consider the required pressure and volume of compressed air. Sandblasting typically requires higher pressures to effectively propel the abrasive material and achieve the desired surface treatment. Gas air compressors can provide higher pressure outputs compared to electric compressors, making them well-suited for sandblasting applications.
4. Compressor Size and Capacity:
The size and capacity of the gas air compressor should be chosen based on the specific requirements of the sandblasting project. Factors to consider include the size of the sandblasting equipment, the length of the air hose, and the desired duration of continuous operation. Selecting a gas air compressor with an appropriate tank size and airflow capacity ensures a consistent supply of compressed air during sandblasting.
5. Maintenance Considerations:
Regular maintenance is crucial for gas air compressors used in sandblasting applications. The abrasive nature of the sand or grit used in sandblasting can introduce particles into the compressor system, potentially causing wear or clogging. Regular inspection, cleaning, and maintenance of the compressor, including filters, valves, and hoses, help prevent damage and ensure optimal performance.
6. Safety Precautions:
When using gas air compressors for sandblasting, it is essential to follow appropriate safety precautions. Sandblasting generates airborne particles and dust, which can be hazardous if inhaled. Ensure proper ventilation, wear appropriate personal protective equipment (PPE), such as respiratory masks, goggles, and protective clothing, and follow recommended safety guidelines to protect the operator and others in the vicinity.
In summary, gas air compressors can be effectively used for sandblasting applications. They provide the necessary compressed air to propel abrasive materials, offer portability and versatility, and can deliver the required pressure and volume for efficient sandblasting operations. Proper compressor selection, maintenance, and adherence to safety precautions contribute to successful and safe sandblasting processes.
Are There Different Types of Gas Air Compressors Available?
Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:
1. Reciprocating Gas Air Compressors:
Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.
2. Rotary Screw Gas Air Compressors:
Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.
3. Rotary Vane Gas Air Compressors:
Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.
4. Centrifugal Gas Air Compressors:
Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.
5. Oil-Free Gas Air Compressors:
Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.
6. Portable Gas Air Compressors:
Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.
7. High-Pressure Gas Air Compressors:
High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.
8. Biogas Air Compressors:
Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.
These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.
editor by CX 2024-04-23
China Custom 150L/Min 3 Kw 4500psi High Pressure Air Compressor Gdr-150e for Scuba Diving/Pcp Paintball small air compressor
Product Description
Product Description
150L/Min 3 Kw 4500psi High Pressure Air Compressor GDR-150E for Scuba Diving/Pcp Paintball
Technical parameter
Model: | GDR-150E |
Charging rate: | 100L/min -5.2cfm |
Filling cylinder time: | 6.0L cylinder 0-330bar/12min |
Working pressure: | Dive 225 Bar Firefighting 330 Bar |
Speed: | 2450 Rpm |
Driven by: | Electric motor |
Power: | 3 kw 1phase |
Dimensions (L*W*H): | 660*400*420mm |
Weight: | 52 Kg |
Compression stage: | 3 |
Lubricating type: | Splash lubrication |
Amount of lubricating oil: | 0.36L |
Opertating temperature: | 5- 45 ºC |
Oil/mosture separator: | After last stage |
Filtration: | Filter cartridge activated carbon and molecular sieve |
Suction filter: | 2 CHINAMFG paper – 25 CHINAMFG polyester |
Application industry
Packaging & Shipping
Company Profile
Certifications
FAQ
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of screw air compressor of HangZhou,ZheJiang ,China. More than 18 years of experience in air compressor manufacturing.
Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.
Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.
Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3.CHINAMFG agents and after service avaiable.arrange our engineers to help you training and installation.
Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.
Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.
Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.
Q8. How do you control quality ?
A: 1. The raw materials are strictly inspected
2. Some key parts are imported from overseas
3. Each compressor must pass at least 5 hours of continuous testing before leaving the factory.
Q9. Do you offer OEM service ?
A: Yes.Both OEM & ODM service can be accepted.
Q10.How long could your air compressor be used?
A: Generally, more than 10 years.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Support |
---|---|
Warranty: | 24months |
Lubrication Style: | Oil-free |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can Gas Air Compressors Be Used for Well Drilling?
Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:
1. Air Drilling Method:
Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.
2. Benefits of Gas Air Compressors:
Gas air compressors offer several advantages for well drilling:
- Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
- Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
- Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
- Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.
3. Compressor Selection:
When selecting a gas air compressor for well drilling, several factors should be considered:
- Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
- Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
- Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.
4. Safety Considerations:
It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.
5. Other Considerations:
While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.
In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.
Can Gas Air Compressors Be Used for Sandblasting?
Yes, gas air compressors can be used for sandblasting. Sandblasting is a process that involves propelling abrasive materials, such as sand or grit, at high speeds to clean, etch, or prepare surfaces. Here’s a detailed explanation:
1. Compressed Air Requirement:
Sandblasting requires a reliable source of compressed air to propel the abrasive material. Gas air compressors, particularly those powered by gasoline or diesel engines, can provide the necessary compressed air for sandblasting operations. The compressors supply a continuous flow of compressed air at the required pressure to propel the abrasive material through the sandblasting equipment.
2. Portable and Versatile:
Gas air compressors are often portable and can be easily transported to different job sites, making them suitable for sandblasting applications in various locations. The portability of gas air compressors allows flexibility and convenience, especially when sandblasting needs to be performed on large structures, such as buildings, tanks, or bridges.
3. Pressure and Volume:
When selecting a gas air compressor for sandblasting, it is essential to consider the required pressure and volume of compressed air. Sandblasting typically requires higher pressures to effectively propel the abrasive material and achieve the desired surface treatment. Gas air compressors can provide higher pressure outputs compared to electric compressors, making them well-suited for sandblasting applications.
4. Compressor Size and Capacity:
The size and capacity of the gas air compressor should be chosen based on the specific requirements of the sandblasting project. Factors to consider include the size of the sandblasting equipment, the length of the air hose, and the desired duration of continuous operation. Selecting a gas air compressor with an appropriate tank size and airflow capacity ensures a consistent supply of compressed air during sandblasting.
5. Maintenance Considerations:
Regular maintenance is crucial for gas air compressors used in sandblasting applications. The abrasive nature of the sand or grit used in sandblasting can introduce particles into the compressor system, potentially causing wear or clogging. Regular inspection, cleaning, and maintenance of the compressor, including filters, valves, and hoses, help prevent damage and ensure optimal performance.
6. Safety Precautions:
When using gas air compressors for sandblasting, it is essential to follow appropriate safety precautions. Sandblasting generates airborne particles and dust, which can be hazardous if inhaled. Ensure proper ventilation, wear appropriate personal protective equipment (PPE), such as respiratory masks, goggles, and protective clothing, and follow recommended safety guidelines to protect the operator and others in the vicinity.
In summary, gas air compressors can be effectively used for sandblasting applications. They provide the necessary compressed air to propel abrasive materials, offer portability and versatility, and can deliver the required pressure and volume for efficient sandblasting operations. Proper compressor selection, maintenance, and adherence to safety precautions contribute to successful and safe sandblasting processes.
Are There Different Types of Gas Air Compressors Available?
Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:
1. Reciprocating Gas Air Compressors:
Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.
2. Rotary Screw Gas Air Compressors:
Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.
3. Rotary Vane Gas Air Compressors:
Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.
4. Centrifugal Gas Air Compressors:
Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.
5. Oil-Free Gas Air Compressors:
Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.
6. Portable Gas Air Compressors:
Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.
7. High-Pressure Gas Air Compressors:
High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.
8. Biogas Air Compressors:
Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.
These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.
editor by CX 2024-04-23
China Best Sales High Pressure Oxygen Compressor Oil Free Oxygen Compressor Nitrogen Compressor mini air compressor
Product Description
High Pressure Oxygen Compressor Oil Free Oxygen Compressor Nitrogen Compressor
Product Description
Product features
1.Touch display PLC control.
2.Remote control is optional.
3.Inlet and outlet pressure overload,temperature overheating,cooling water failure, circulation rolling alarm and stop.
4.Operation time display, maintenance cycle prompt.
5.With water tank and circulating pump without external pipeline, filling antifreeze at low temperature without obstruction.
Compressed media | Nitrogen (must be dry and particle free) |
Model | VWN-180/5-25-II |
Rated flow (standard state) | 180Nm3/h |
Intake air temperature | ≤40 |
Intake pressure | 0.5Mpa |
Exhaust pressure | 2.5Mpa |
Cylinder diameter * quantity | (Φ90+φ65)*2 |
Engine speed | 720r/min |
Cooling mode | Air cooling |
Lubrication method | Fully oil-free lubrication |
Compression series | 2 |
Structural type | Angle type, V type |
Motor power | 11kw*2 |
Transmission mode | Belt drive |
Installation type | Basic type |
Dual pressure controller | Intake 4-6 |
Control mode | Completely oil-free lubrication, air cooling, reciprocating piston type |
Size of inlet and outlet | RC1″ |
Dimensions | 1500*1350*1100mm |
Weight | 280kg |
Product Parameters
Compressed media (General for oxygen and nitrogen) |
Model | Capacity (Nm3/h) |
Intake pressure (MPa) |
Exhaust pressure (MPa) |
Power (kW) |
Dimensions (mm) |
Oxygen/Nitrogen | VW-0.33/5-25 | 20 | 0.5 | 2.5 | 4 | 1220*500*800 |
Oxygen/Nitrogen | ZWN-3.6/4-8 | 3.6 | 0.4 | 0.8 | 0.75 | 750*500*650 |
Oxygen/Nitrogen | VWN-10/5-25 | 10 | 0.5 | 2.5 | 4 | 1600*700*1500 |
Oxygen/Nitrogen | VWN-60/5-16 | 60 | 0.5 | 1.6 | 5.5 | 1250*500*900 |
Oxygen/Nitrogen | VWN-20/6-20 | 20 | 0.6 | 2.0 | 4 | 1250*600*900 |
Oxygen/Nitrogen | VWN-20/5-25 | 20 | 0.5 | 2.5 | 4 | 1050*600*1000 |
Oxygen/Nitrogen | VWN-40/7-25 | 40 | 0.7 | 2.5 | 4 | 1250*500*900 |
Oxygen/Nitrogen | VWN-60/4-25 | 60 | 0.4 | 2.5 | 11 | 1250*700*900 |
Oxygen/Nitrogen | WWN-80/4-25 | 80 | 0.4 | 2.5 | 11 | 1350*700*1200 |
Oxygen/Nitrogen | VWN-80/7-25 | 80 | 0.7 | 2.5 | 7.5 | 1250*700*900 |
Oxygen/Nitrogen | VWN-60/4-30 | 60 | 0.4 | 3.0 | 3 | 1250*500*900 |
Oxygen/Nitrogen | VWN-50/4-30 | 50 | 0.4 | 3.0 | 7.5 | 1250*650*1000 |
Oxygen/Nitrogen | VWN-80/5-30 | 80 | 0.5 | 3.0 | 11 | 1250*700*1000 |
Oxygen/Nitrogen | VWN-30/5-35 | 30 | 0.5 | 3.5 | 5.5 | 1050*500*1000 |
Oxygen/Nitrogen | VWN-50/5-35 | 50 | 0.5 | 3.5 | 7.5 | 1050*700*1000 |
Oxygen/Nitrogen | VWN-40/5-40 | 40 | 0.5 | 4.0 | 7.5 | 1250*600*900 |
Oxygen/Nitrogen | VWY-80/0.5-50 | 80 | 0.05 | 5.0 | 18.5 | 1250*700*900 |
Oxygen/Nitrogen | VWND-55/5-8 | 55 | 0.5 | 0.8 | 4 | 1400*810*1300 |
Oxygen/Nitrogen | VWN-60/5-10 | 60 | 0.5 | 1.0 | 4 | 1250*500*900 |
Oxygen/Nitrogen | VWY-75/4-16 | 75 | 0.4 | 1.6 | 7.5 | 1050*500*1000 |
Oxygen/Nitrogen | VWND-100/5-10 | 100 | 0.5 | 1.0 | 5.5 | 1400*930*1350 |
Oxygen/Nitrogen | VWN-120/6-16 | 120 | 0.6 | 1.6 | 11 | 1250*700*1000 |
Oxygen/Nitrogen | VWN-140/5-8 | 140 | 0.5 | 0.8 | 5.5 | 1250*600*900 |
Oxygen/Nitrogen | WWND-150/4-10 | 150 | 0.4 | 1.0 | 11 | 1430*1030*1350 |
Oxygen/Nitrogen | SWND-240/4-10 | 240 | 0.4 | 1.0 | 15 | 1500×1100×1620 |
Oxygen/Nitrogen | VWY-120/5-10 | 120 | 0.5 | 1.0 | 7.5 | 1250*600*1000 |
Oxygen/Nitrogen | SWY-150/4-16 | 150 | 0.4 | 1.6 | 15 | 1250*900*1480 |
Oxygen/Nitrogen | WWN-100/4-25 | 100 | 0.4 | 2.5 | 15 | 1350*700*1200 |
Oxygen/Nitrogen | WWN-120/6-30 | 120 | 0.6 | 3.0 | 15 | 1250*800*1200 |
Oxygen/Nitrogen | WWN-120/6-45 | 120 | 0.6 | 4.5 | 18.5 | 1350*1100*1100 |
Oxygen/Nitrogen | WWN-80/5-45 | 80 | 0.5 | 4.5 | 15 | 1350*700*1200 |
Oxygen/Nitrogen | WWN-240/5-10 | 240 | 0.5 | 1.0 | 15 | 1350*800*1200 |
Oxygen/Nitrogen | WWN-300/0.5-8-II | 300 | 0.05 | 0.8 | 22*2 | 2500*1200*800 |
Oxygen/Nitrogen | WWNFB-900/4-8-II | 900 | 0.4 | 0.8 | 22*2 | 2600*1000*900 |
Oxygen/Nitrogen | VWN-180/5-25-II | 180 | 0.5 | 2.5 | 11*2 | 1500*1350*1100 |
Oxygen/Nitrogen | WWN-200/3-18-II | 200 | 0.3 | 1.8 | 11*2 | 1450*1350*1100 |
Oxygen/Nitrogen | WWN-200/6-30-II | 200 | 0.6 | 3.0 | 11*2 | 1600*1600*1200 |
Oxygen/Nitrogen | WWFB-430/4-9 | 430 | 0.4 | 0.9 | 22 | 1500*1000*800 |
Successful cases
FAQ
FAQ:
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of screw air compressor of HangZhou,ZheJiang ,China. More than 18 years of experience in air compressor manufacturing.
Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.
Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.
Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3.CHINAMFG agents and after service avaiable.arrange our engineers to help you training and installation.
Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.
Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.
Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.
Q8. How do you control quality ?
A: 1. The raw materials are strictly inspected
2. Some key parts are imported from overseas
3. Each compressor must pass at least 5 hours of continuous testing before leaving the factory.
Q9. Do you offer OEM service ?
A: Yes.Both OEM & ODM service can be accepted.
Q10.How long could your air compressor be used?
A: Generally, more than 10 years.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Support |
---|---|
Warranty: | 24 Months |
Lubrication Style: | Oil-free |
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
What Is the Typical Lifespan of a Gas Air Compressor?
The typical lifespan of a gas air compressor can vary depending on several factors, including the quality of the compressor, its usage patterns, maintenance practices, and environmental conditions. However, with proper care and maintenance, a gas air compressor can last for many years. Here’s a detailed explanation of the factors that can affect the lifespan of a gas air compressor:
1. Quality of the Compressor:
The quality and construction of the gas air compressor play a significant role in determining its lifespan. Compressors made with high-quality materials, precision engineering, and robust components are generally more durable and can withstand heavy usage over an extended period.
2. Usage Patterns:
The usage patterns of the gas air compressor can impact its lifespan. If the compressor is used consistently and for extended periods, it may experience more wear and tear compared to compressors used intermittently or for lighter tasks. Heavy-duty applications, such as continuous operation with high-demand tools, can put more strain on the compressor and potentially reduce its lifespan.
3. Maintenance Practices:
Regular maintenance is crucial for extending the lifespan of a gas air compressor. Following the manufacturer’s recommended maintenance schedule, performing routine tasks like oil changes, filter cleaning/replacement, and inspection of components can help prevent issues and ensure optimal performance. Neglecting maintenance can lead to accelerated wear and potential breakdowns.
4. Environmental Conditions:
The operating environment can significantly impact the lifespan of a gas air compressor. Factors such as temperature extremes, humidity levels, presence of dust or debris, and exposure to corrosive substances can affect the compressor’s components and overall performance. Compressors used in harsh environments may require additional protection or specialized maintenance to mitigate these adverse conditions.
5. Proper Installation and Operation:
Proper installation and correct operation of the gas air compressor are essential for its longevity. Following the manufacturer’s guidelines for installation, ensuring proper ventilation, maintaining correct oil levels, and operating within the compressor’s specified capacity and pressure limits can help prevent excessive strain and premature wear.
Considering these factors, a well-maintained gas air compressor can typically last anywhere from 10 to 15 years or even longer. However, it’s important to note that this is a general estimate, and individual results may vary. Some compressors may experience shorter lifespans due to heavy usage, inadequate maintenance, or other factors, while others may last well beyond the expected lifespan with proper care and favorable conditions.
Ultimately, investing in a high-quality gas air compressor, adhering to recommended maintenance practices, and using it within its intended capabilities can help maximize its lifespan and ensure reliable performance for an extended period.
What Is the Role of Air Receivers in Gas Air Compressor Systems?
Air receivers play a crucial role in gas air compressor systems by serving as storage tanks for compressed air. Here’s a detailed explanation:
1. Storage and Stabilization:
The primary function of an air receiver is to store compressed air generated by the gas air compressor. As the compressor produces compressed air, the air receiver collects and stores it. This storage capacity helps meet fluctuating demand in compressed air usage, providing a buffer between the compressor and the system’s air consumption.
By storing compressed air, the air receiver helps stabilize the supply to the system, reducing pressure fluctuations and ensuring a consistent and reliable flow of compressed air. This is particularly important in applications where the demand for compressed air may vary or experience peaks and valleys.
2. Pressure Regulation:
Another role of the air receiver is to assist in pressure regulation within the gas air compressor system. As compressed air enters the receiver, the pressure inside increases. When the pressure reaches a predetermined upper limit, typically set by a pressure switch or regulator, the compressor stops supplying air, and the excess air is stored in the receiver.
Conversely, when the pressure in the system drops below a certain lower limit, the pressure switch or regulator signals the compressor to start, replenishing the compressed air in the receiver and maintaining the desired pressure level. This cycling of the compressor based on pressure levels helps regulate and control the overall system pressure.
3. Condensate Separation:
During the compression process, moisture or condensate can form in the compressed air due to the cooling effect. The air receiver acts as a reservoir that allows the condensate to settle at the bottom, away from the outlet. The receiver often includes a drain valve at the bottom to facilitate the removal of accumulated condensate, preventing it from reaching downstream equipment and causing potential damage or performance issues.
4. Energy Efficiency:
Air receivers contribute to energy efficiency in gas air compressor systems. They help optimize the operation of the compressor by reducing the occurrence of short-cycling, which refers to frequent on-off cycling of the compressor due to rapid pressure changes. Short-cycling can cause excessive wear on the compressor and reduce its overall efficiency.
The presence of an air receiver allows the compressor to operate in longer and more efficient cycles. The compressor runs until the receiver reaches the upper pressure limit, ensuring a more stable and energy-efficient operation.
5. Air Quality Improvement:
Depending on the design, air receivers can also aid in improving air quality in the compressed air system. They provide a space for the compressed air to cool down, allowing moisture and some contaminants to condense and separate from the air. This can be further enhanced with the use of additional filtration and drying equipment installed downstream of the receiver.
In summary, air receivers play a vital role in gas air compressor systems by providing storage capacity, stabilizing compressed air supply, regulating system pressure, separating condensate, improving energy efficiency, and contributing to air quality control. They are an integral component in ensuring the reliable and efficient operation of compressed air systems across various industries and applications.
What Is a Gas Air Compressor?
A gas air compressor is a type of air compressor that is powered by a gas engine instead of an electric motor. It uses a combustion engine, typically fueled by gasoline or diesel, to convert fuel energy into mechanical energy, which is then used to compress air. Here’s a detailed explanation of a gas air compressor:
1. Power Source:
A gas air compressor utilizes a gas engine as its power source. The engine can be fueled by gasoline, diesel, or other types of combustible gases, such as natural gas or propane. The combustion engine drives the compressor pump to draw in air and compress it to a higher pressure.
2. Portable and Versatile:
Gas air compressors are often designed to be portable and versatile. The gas engine provides mobility, allowing the compressor to be easily transported and used in different locations, including remote job sites or areas without access to electricity. This makes gas air compressors suitable for applications such as construction projects, outdoor activities, and mobile service operations.
3. Compressor Pump:
The compressor pump in a gas air compressor is responsible for drawing in air and compressing it. The pump can be of various types, including reciprocating, rotary screw, or centrifugal, depending on the specific design of the gas air compressor. The pump’s role is to increase the pressure of the incoming air, resulting in compressed air that can be used for various applications.
4. Pressure Regulation:
Gas air compressors typically feature pressure regulation mechanisms to control the output pressure of the compressed air. This allows users to adjust the pressure according to the requirements of the specific application. The pressure regulation system may include pressure gauges, regulators, and safety valves to ensure safe and reliable operation.
5. Applications:
Gas air compressors find applications in a wide range of industries and activities. They are commonly used in construction sites for powering pneumatic tools such as jackhammers, nail guns, and impact wrenches. Gas air compressors are also utilized in agriculture for operating air-powered machinery like sprayers and pneumatic seeders. Additionally, they are employed in recreational activities such as inflating tires, sports equipment, or inflatable structures.
6. Maintenance and Fuel Considerations:
Gas air compressors require regular maintenance, including engine servicing, oil changes, and filter replacements, to ensure optimal performance and longevity. The type of fuel used in the gas engine also needs to be considered. Gasoline-powered compressors are commonly used in smaller applications, while diesel-powered compressors are preferred for heavy-duty and continuous operation due to their higher fuel efficiency and durability.
Overall, a gas air compressor is an air compressor that is powered by a gas engine, offering mobility and versatility. It provides compressed air for various applications and is commonly used in construction, agriculture, and outdoor activities. Regular maintenance and fuel considerations are essential to ensure reliable operation and optimal performance.
editor by CX 2024-04-22
China factory Top Low Noise 42cfm 10HP Screw Air Compressor in Wastewater Treatment with high quality
Product Description
Product Details:
1.motor
Superior motor, F degree insulation, IP55,work normally even in a poor working environment can.
WEG IE4 motor,more energy saving.
2.Electric system:
Schneider brand from france,founded in 1836,Schneider Electric is one of the industrial pioneers of
France.The world’s top 500.companies, the world’s top electric companies.
3.Cooler:
The area of the radiator increased by 30% compared with european type, cooling fans not directly
connected, not easy to get
4.Air end:
Air end is the core components of complete screw air compressor, the design original intention: advanced
technology, reliabe.quality, stable performance and high efficiency operation, not only minimize the manu
facturing bias, but also make the air end.accurately installed. “ZIQI” screw compressor air ened adopt
original German AERZEN or GHH brands, excellent unique design,enjoyed an very good reputation by
users for the accuracy of manufacturing and high effciency.
5.Oil/air vessed:
EURE brand from ltaly,it belongs to ltaly Baglioni group,found in 1968,it is the European pressure vessel
manufacture leader in the.world.Good oil/air vessel could be better to separate more hot lubricant oil,it could
avoid the just separated oil to go next cycle,so to.reduce the exhaust air temperature and protect the air
compressor to extend the machine services life.
6.Oil tube:
Adopt ZIQI unique reverse.lock technology, oil never leak.Italy manuli tube, life will be five times longer
compared to ordinary.rubber tube.
Parameter:
MODEL | air displacement/exhaust pressure | cooling | transmission | power | lubricant oil | noise | exit diameter |
m3/min/MPa | KW | L | dB(A) | mm | |||
GAS-7.5A | 0.13-1.3/0.7 | air-cooling | belt drive | 7.5 | 5 | 60-64 | DN20 |
0.12-1.2/038 | 7.5 | ||||||
0.11-1.1/1.0 | 7.5 | ||||||
0.09-0.9/1.3 | 7.5 | ||||||
GAS-11A | 0.18-1.8/0.7 | 11 | 5 | 61-65 | DN20 | ||
0.17-1.7/0.8 | 11 | ||||||
0.15-1.5/1.0 | 11 | ||||||
0.12-1.2/1.3 | 11 | ||||||
GAS-18.5A | 0.32-3.2/0.7 | 18.5 | 12 | 62-66 | DN25 | ||
0.30-3.0/0.8 | 18.5 | ||||||
0.26-2.6/1.0 | 18.5 | ||||||
0.24-2.4/1.3 | 18.5 | ||||||
GAS-30A | 0.55-5.5/0.7 | 30 | 18 | 63-67 | DN40 | ||
0.53-503/0.8 | 30 | ||||||
0.50-5.0/1.0 | 30 | ||||||
0.46-4.6/1.3 | 30 | ||||||
GAS-37A | 0.65-6.5/0.7 | 37 | 18 | 63-67 | DN40 | ||
0.62-6.2/0.8 | 37 | ||||||
0.56-5.6/1.0 | 37 | ||||||
0.48-4.6/1.3 | 37 | ||||||
GAS-55A | 0.95-9.5/0.7 | air-cooling/water-cooling | flexbility direct drive | 55 | 36 | 70-74 | DN32 |
0.92-9.2/0.8 | 55 | ||||||
0.86-8.6/1.0 | 55 | ||||||
/ | / | ||||||
GAS-90A | 1.60-16.0/0.7 | 90 | 80 | 73-77 | DN40 | ||
1.56-15.6/0.8 | 90 | ||||||
1.43-14.3/1.0 | 90 | ||||||
1.36-13.6/1.3 | 90 | ||||||
GAS-110A | 2.00-20.0/0.7 | 110 | 80 | 74-78 | DN40 | ||
1.93-19.3/0.8 | 110 | ||||||
1.75-17.5/1.0 | 110 | ||||||
1.45-14.5/1.3 | 110 | ||||||
GAS-132A | 2.42-24.2/0.7 | 132 | 80 | 75-79 | DN40 | ||
2.80-28.0/0.8 | 132 | ||||||
2.32-23.2/1.0 | 132 | ||||||
/ | / | ||||||
GAS-185A | 3.25-32.5/0.7 | 185 | 185 | 75-79 | DN50 | ||
2.95-29.5/0.8 | 185 | ||||||
2.72-27.2/1.0 | 185 | ||||||
/ | / |
Our company:
MORE AUTHORITY & MORE TRUST
ZIQI compressor company has strong scientific research technology, advancedcomputer
management system, European standard production line.ZIQI providehigh quality products
and services for general industrials.manufacture industrials.electrieity.architecture.mining.
energy.etc.
Packing&Transport:
MORE PROFESSIOR & MORE SAFER
Sales Service:
MORE INTIMATED & MORE WARM
√Professional online consultant to solve your question about compressor system.
√ Free site design consultant, and energy saving solution to help you save operation cost.
√ Negotiable technician available to service machinery overseas.
√ Online professional after-service until solve the problem.
√ 1 year warranty after commissioning or 16 months against shipping date, it depends on
which 1 come firstly for the whole machine(except maintenance consumable).
√ A sufficient number of spare parts are available, make sure the good after service.
OTHERS:
FAQ:
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of screw air compressor more than 8 years.
Q2. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro
and other currency.
Q3. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3.Worldwid agents and after service avaiable.arrange our engineers to help you training and installation.
Q4. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.
Q5. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.
Q6. How do you control quality ?
A: 1.Raw- material in checking.
2.Assembly.
3.Worldwid after service available.arrange our engineers to help you training and installation.
CONTACT US :
Yvonne will provide you with the most considerate service.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 1 Year |
---|---|
Warranty: | Online Support |
Lubrication Style: | Lubricated |
Cooling System: | Air Cooling |
Power Source: | AC Power |
Cylinder Position: | Vertical |
Customization: |
Available
|
|
---|
How Do You Maintain a Gas Air Compressor?
Maintaining a gas air compressor is essential to ensure its optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, extends the compressor’s lifespan, and promotes efficient operation. Here are some key maintenance steps for a gas air compressor:
1. Read the Manual:
Before performing any maintenance tasks, thoroughly read the manufacturer’s manual specific to your gas air compressor model. The manual provides important instructions and guidelines for maintenance procedures, including recommended intervals and specific maintenance requirements.
2. Check and Change the Oil:
Gas air compressors typically require regular oil changes to maintain proper lubrication and prevent excessive wear. Check the oil level regularly and change it according to the manufacturer’s recommendations. Use the recommended grade of oil suitable for your compressor model.
3. Inspect and Replace Air Filters:
Inspect the air filters regularly and clean or replace them as needed. Air filters prevent dust, debris, and contaminants from entering the compressor’s internal components. Clogged or dirty filters can restrict airflow and reduce performance. Follow the manufacturer’s guidelines for filter cleaning or replacement.
4. Drain Moisture from the Tank:
Gas air compressors accumulate moisture in the compressed air, which can lead to corrosion and damage to the tank and internal components. Drain the moisture from the tank regularly to prevent excessive moisture buildup. Refer to the manual for instructions on how to properly drain the moisture.
5. Check and Tighten Connections:
Regularly inspect all connections, fittings, and hoses for any signs of leaks or loose connections. Tighten any loose fittings and repair or replace damaged hoses or connectors. Leaks can lead to reduced performance and inefficiency.
6. Inspect Belts and Pulleys:
If your gas air compressor has belts and pulleys, inspect them for wear, tension, and proper alignment. Replace any worn or damaged belts and ensure proper tension to maintain optimal performance.
7. Clean the Exterior and Cooling Fins:
Keep the exterior of the gas air compressor clean from dirt, dust, and debris. Use a soft cloth or brush to clean the surfaces. Additionally, clean the cooling fins regularly to remove any accumulated debris that can impede airflow and cause overheating.
8. Schedule Professional Servicing:
While regular maintenance can be performed by the user, it is also important to schedule professional servicing at recommended intervals. Professional technicians can perform thorough inspections, conduct more complex maintenance tasks, and identify any potential issues that may require attention.
9. Follow Safety Precautions:
When performing maintenance tasks on a gas air compressor, always follow safety precautions outlined in the manual. This may include wearing protective gear, disconnecting the power source, and ensuring proper ventilation in confined spaces.
By following these maintenance steps and adhering to the manufacturer’s guidelines, you can keep your gas air compressor in optimal condition, prolong its lifespan, and ensure safe and efficient operation.
Can Gas Air Compressors Be Used for Natural Gas Compression?
Gas air compressors are not typically used for natural gas compression. Here’s a detailed explanation:
1. Different Compressed Gases:
Gas air compressors are specifically designed to compress atmospheric air. They are not typically designed or suitable for compressing natural gas. Natural gas, which is primarily composed of methane, requires specialized compressors designed to handle the unique properties and characteristics of the gas.
2. Safety Considerations:
Natural gas compression involves handling a flammable and potentially hazardous substance. Compressing natural gas requires specialized equipment that meets stringent safety standards to prevent leaks, minimize the risk of ignition or explosion, and ensure the safe handling of the gas. Gas air compressors may not have the necessary safety features or materials to handle natural gas safely.
3. Equipment Compatibility:
Natural gas compression systems typically include components such as gas compressors, gas coolers, separators, and control systems that are specifically designed and engineered for the compression and handling of natural gas. These components are built to withstand the specific demands and conditions associated with natural gas compression, including the high pressures and potential presence of impurities.
4. Efficiency and Performance:
Compressing natural gas requires specialized compressors that can handle the high-pressure ratios and volumetric flow rates associated with the gas. Gas air compressors are generally not designed to achieve the same compression ratios and performance levels required for natural gas compression. Using gas air compressors for natural gas compression would likely result in inefficient operation and suboptimal performance.
5. Regulatory Compliance:
Compressing natural gas is subject to various regulations and standards to ensure safety, environmental protection, and compliance with industry guidelines. These regulations often dictate specific requirements for equipment, materials, and operating procedures in natural gas compression systems. Gas air compressors may not meet these regulatory requirements for natural gas compression.
6. Industry Standards and Practices:
The natural gas industry has well-established standards and best practices for equipment selection, installation, and operation in gas compression systems. These standards are based on the specific requirements and characteristics of natural gas. Gas air compressors do not align with these industry standards and practices, which are essential for safe and efficient natural gas compression.
In summary, gas air compressors are not suitable for natural gas compression. Natural gas compression requires specialized equipment designed to handle the unique properties and safety considerations associated with the gas. Compressors specifically engineered for natural gas compression offer the necessary performance, safety features, and regulatory compliance required for efficient and reliable operation in natural gas compression systems.
Are There Different Types of Gas Air Compressors Available?
Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:
1. Reciprocating Gas Air Compressors:
Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.
2. Rotary Screw Gas Air Compressors:
Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.
3. Rotary Vane Gas Air Compressors:
Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.
4. Centrifugal Gas Air Compressors:
Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.
5. Oil-Free Gas Air Compressors:
Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.
6. Portable Gas Air Compressors:
Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.
7. High-Pressure Gas Air Compressors:
High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.
8. Biogas Air Compressors:
Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.
These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.
editor by CX 2024-04-11
China Standard China Supplier High Quality Reciprocating Natural Gas CNG Compressor best air compressor
Product Description
Reciprocating Micro-oil/ oil-free Piston Compressor
( Blue Font To View Hyperlink)
Our company specialize in making various kinds of compressors, such as:Diaphragm compressor,Piston compressor, Air compressors,Nitrogen generator,Oxygen generator ,Gas cylinder,etc. All products can be customized according to your parameters and other requirements.
This series of oil-free compressor is one of the first products produced by our factory in China. The product has the characteristics of low speed, high component strength, stable operation, long service life and convenient maintenance. This series compressor is in the form of unit. It integrates compressor, gas-liquid separator, filter, 2 position four-way valve, safety valve, check valve, explosion-proof motor and chassis. The utility model has the advantages of small volume, light weight, low noise, good sealing performance, easy installation, simple operation, etc.
Main components
1. Motion system: crankshaft, piston connecting rod assembly, coupling, etc.
2. Air distribution system: valve plate, valve spring, etc.
3. Sealing system: piston ring, oil seal, gasket, packing, etc.
4. Body system: crankcase, cylinder block, cylinder liner, cover plate, etc.
5. Lubrication system: lubricating oil pump, oil filter, pressure regulating valve, etc.;
6. Safety and energy regulation systems: safety valves, energy regulation devices, etc.
Working principle of piston compressor
When the crankshaft of the piston compressor rotates, the piston will reciprocate through the transmission of the connecting rod, and the working volume formed by the inner wall of the cylinder, the cylinder head and the top surface of the piston will periodically change. When the piston of a piston compressor starts to move from the cylinder head, the working volume in the cylinder gradually increases. At this time, the gas flows along the intake pipe and pushes the intake valve to enter the cylinder until the working volume reaches the maximum. , The intake valve is closed; when the piston of the piston compressor moves in the reverse direction, the working volume in the cylinder is reduced, and the gas pressure is increased. When the pressure in the cylinder reaches and is slightly higher than the exhaust pressure, the exhaust valve opens and the gas is discharged from the cylinder , Until the piston moves to the limit position, the exhaust valve is closed. When the piston of the piston compressor moves in the reverse direction again, the above process repeats. In short, the crankshaft of a piston compressor rotates once, the piston reciprocates once, and the process of air intake, compression, and exhaust is realized in the cylinder, which completes a work cycle.
Advantages of piston compressor
1. The applicable pressure range of the piston compressor is wide, and the required pressure can be reached regardless of the flow rate;
2. The piston compressor has high thermal efficiency and low unit power consumption;
3. Strong adaptability, that is, a wide exhaust range, and is not affected by the pressure level, and can adapt to a wider pressure range and cooling capacity requirements;
4. Piston compressors have low requirements for materials, and use common steel materials, which is easier to process and lower in cost;
5. The piston compressor is relatively mature in technology, and has accumulated rich experience in production and use;
6. The device system of the piston compressor is relatively simple.
Note: In the unloading process, the compressor pressurizes the gas from the storage tank and then presses it into the tank car through the gas-phase pipeline, and presses the liquid from the tank car to the storage tank through the gas-phase differential pressure to complete the unloading process. When the gas phase is pressurized, the temperature of the gas phase will rise. At this time, forced cooling is not necessary, because if the gas phase is compressed and then cooled, it is easy to liquefy, and it is difficult to establish the pressure difference of the gas phase, which is not conducive to the replacement of the gas phase and the liquid phase. In short, it will cause the prolongation of the unloading process. If it is necessary to recover the residual gas, the cooler can be selected to forcibly cool the gas phase during the recovery operation, so as to recover the residual gas as soon as possible.The loading process is opposite to the unloading process.
Chemical Process Compressor Description
Chemical process compressors refer to process reciprocating piston compressors used to compress various single or mixed media gases in petroleum and chemical processes, as well as chemical exhaust gas recycling systems. Its main function is to transport the medium gas in the reaction device and provide the required pressure to the reaction device.
Features 1. Designed for specific process flow. 2. The whole machine is skid-mounted and advanced in structure. 3. The compressor types are: Z type, D type, M type. 4. The middle body of the slideway and the cylinder can be designed in different structural forms according to the process requirements.
Reference Technical parameters and specifications
Model | Volume flow(Nm3/h) | Suction pressure(Mpa) | Exhaust pressure (Mpa) | Motor power(kw) | Dimension (mm) | |
1 | ZW-0.4/ 2-250 | 60 | 0.2 | 25 | 18.5 | 2800*2200*1600 |
2 | ZW-0.81/ (1~3)-25 | 120 | 0.1~0.3 | 2.5 | 22 | 1000*580*870 |
3 | DW-5.8/0.5-5 | 400~500 | 0.05 | 0.5 | 37 | 2000*1600*1200 |
4 | DW-10/2 | 510 | Atmospheric pressure | 0.2 | 37 | 2000*1600*1200 |
5 | DW-6.0/5 | 300 | Atmospheric pressure | 0.5 | 37 | 2000*1600*1200 |
6 | DW-0.21/(20~30)-250 | 270 | 2~3 | 25 | 45 | 3200*2200*1600 |
7 | ZW-0.16/60-250 | 480 | 6 | 25 | 45 | 3000*2200*1600 |
8 | ZW-0.46 /(5~10)-250 | 200 | 0.5~1.0 | 25 | 45 | 3000*2200*1600 |
9 | DW-1.34/2-250 | 208 | 0.2 | 25 | 55 | 3400*2200*1600 |
10 | DW-0.6/24-85 | 720 | 2.4 | 8.5 | 55 | 2200*1600*1200 |
11 | ZW-2.9/14.2-20 | 220 | 1.42 | 2 | 55 | 2200*1600*1200 |
12 | VW-2.0/(2~4)-25 | 410 | 0.2~0.4 | 2.5 | 55 | 3400*2200*1600 |
13 | DW-0.85/(3~4)-250 | 180 | 0.3~0.4 | 25 | 55 | 2400*1800*1500 |
14 | DW-25-(0.2~0.3)-1.5 | 1620 | 0.02~0.03 | 0.15 | 75 | 2400*1800*1500 |
15 | VW-8.0/0.3-25 | 540 | 0.03 | 2.5 | 90 | 2400*1800*1500 |
16 | DW-6.8/0.05-40 | 200~400 | 0.005 | 4 | 90 | 2400*1800*1500 |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Lubrication Style: | Oil-free |
---|---|
Cooling System: | Air Cooling |
Cylinder Arrangement: | Balanced Opposed Arrangement |
Cylinder Position: | Vertical |
Structure Type: | Closed Type |
Compress Level: | Single-Stage |
Customization: |
Available
|
|
---|
What Is the Fuel Efficiency of Gas Air Compressors?
The fuel efficiency of gas air compressors can vary depending on several factors, including the compressor’s design, engine size, load capacity, and usage patterns. Gas air compressors typically use internal combustion engines powered by gasoline or propane to generate the mechanical energy required for compressing air. Here’s a detailed explanation of the factors that can influence the fuel efficiency of gas air compressors:
1. Engine Design and Size:
The design and size of the engine in a gas air compressor can impact its fuel efficiency. Engines with advanced technologies such as fuel injection and electronic controls tend to offer better fuel efficiency compared to older carbureted engines. Additionally, larger engines may consume more fuel to produce the required power, resulting in lower fuel efficiency compared to smaller engines for the same workload.
2. Load Capacity and Usage Patterns:
The load capacity and usage patterns of the gas air compressor play a significant role in fuel efficiency. Compressors operating at or near their maximum load capacity for extended periods may consume more fuel compared to compressors operating at lower loads. Additionally, compressors used intermittently or for lighter tasks may have better fuel efficiency due to reduced demand on the engine.
3. Maintenance and Tuning:
Proper maintenance and tuning of the gas air compressor’s engine can improve fuel efficiency. Regular maintenance tasks such as oil changes, air filter cleaning/replacement, spark plug inspection, and tuning the engine to the manufacturer’s specifications can help ensure optimal engine performance and fuel efficiency.
4. Operating Conditions:
The operating conditions, including ambient temperature, altitude, and humidity, can affect the fuel efficiency of gas air compressors. Extreme temperatures or high altitudes may require the engine to work harder, resulting in increased fuel consumption. Additionally, operating in humid conditions can affect the combustion process and potentially impact fuel efficiency.
5. Fuel Type:
The type of fuel used in the gas air compressor can influence its fuel efficiency. Gasoline and propane are common fuel choices for gas air compressors. The energy content and combustion characteristics of each fuel can affect the amount of fuel consumed per unit of work done. It is important to consider the specific fuel requirements and recommendations of the compressor manufacturer for optimal fuel efficiency.
6. Operator Skills and Practices:
The skills and practices of the operator can also impact fuel efficiency. Proper operation techniques, such as avoiding excessive idling, maintaining consistent engine speeds, and minimizing unnecessary load cycles, can contribute to improved fuel efficiency.
It is important to note that specific fuel efficiency ratings for gas air compressors can vary widely depending on the aforementioned factors. Manufacturers may provide estimated fuel consumption rates or fuel efficiency data for their specific compressor models, which can serve as a reference point when comparing different models or making purchasing decisions.
Ultimately, to maximize fuel efficiency, it is recommended to select a gas air compressor that suits the intended application, perform regular maintenance, follow the manufacturer’s guidelines, and operate the compressor efficiently based on the workload and conditions.
Can Gas Air Compressors Be Used for Pneumatic Tools?
Yes, gas air compressors can be used for pneumatic tools. Here’s a detailed explanation:
1. Versatile Power Source:
Gas air compressors, powered by gasoline or diesel engines, provide a portable and versatile power source for operating pneumatic tools. They eliminate the need for electrical power supply, making them suitable for remote locations or construction sites where electricity may not be readily available.
2. High Power Output:
Gas air compressors typically offer higher power output compared to electric compressors of similar size. This high power output enables gas compressors to deliver the necessary air pressure and volume required by pneumatic tools, ensuring optimal tool performance.
3. Mobility and Portability:
Gas air compressors are often designed with mobility and portability in mind. They are compact and equipped with wheels or handles, allowing for easy transportation to different job sites. This mobility is advantageous when using pneumatic tools in various locations or when working in confined spaces.
4. Continuous Operation:
Gas air compressors can provide continuous air supply for pneumatic tools without the need for frequent pauses or recharging. As long as there is an adequate fuel supply, gas compressors can operate for extended periods, allowing uninterrupted use of pneumatic tools for tasks such as drilling, nailing, sanding, or painting.
5. Suitable for High-Demand Applications:
Pneumatic tools used in heavy-duty applications often require a robust air supply to meet their performance requirements. Gas air compressors can generate higher air flow rates and maintain higher operating pressures, making them suitable for high-demand pneumatic tools like jackhammers, impact wrenches, or sandblasters.
6. Flexibility in Compressor Size:
Gas air compressors are available in various sizes and capacities, allowing users to choose the compressor that best matches the air demands of their pneumatic tools. From small portable compressors for light-duty tasks to larger industrial-grade compressors for heavy-duty applications, there is a wide range of options to suit different tool requirements.
7. Reduced Dependency on Electrical Infrastructure:
Using gas air compressors for pneumatic tools reduces reliance on electrical infrastructure. In situations where the electrical power supply is limited, unreliable, or expensive, gas compressors offer a viable alternative, ensuring consistent tool performance without concerns about power availability.
It’s important to note that gas air compressors emit exhaust gases during operation, so proper ventilation is necessary when using them in enclosed spaces to ensure the safety of workers.
In summary, gas air compressors can effectively power pneumatic tools, offering mobility, high power output, continuous operation, and suitability for various applications. They provide a reliable and portable solution for utilizing pneumatic tools in locations where electrical power supply may be limited or unavailable.
What Safety Precautions Should Be Taken When Operating Gas Air Compressors?
Operating gas air compressors safely is essential to prevent accidents, injuries, and equipment damage. It’s important to follow proper safety precautions to ensure a safe working environment. Here’s a detailed explanation of the safety precautions that should be taken when operating gas air compressors:
1. Read and Follow the Manufacturer’s Instructions:
Before operating a gas air compressor, carefully read and understand the manufacturer’s instructions, user manual, and safety guidelines. Follow the recommended procedures, maintenance schedules, and any specific instructions provided by the manufacturer.
2. Provide Adequate Ventilation:
Gas air compressors generate exhaust fumes and heat during operation. Ensure that the operating area is well-ventilated to prevent the accumulation of exhaust gases, which can be harmful or even fatal in high concentrations. If operating indoors, use ventilation systems or open windows and doors to allow fresh air circulation.
3. Wear Personal Protective Equipment (PPE):
Wear appropriate personal protective equipment (PPE) when operating a gas air compressor. This may include safety glasses, hearing protection, gloves, and sturdy footwear. PPE helps protect against potential hazards such as flying debris, noise exposure, and hand injuries.
4. Perform Regular Maintenance:
Maintain the gas air compressor according to the manufacturer’s recommendations. Regularly inspect the compressor for any signs of wear, damage, or leaks. Keep the compressor clean and free from debris. Replace worn-out parts and components as needed to ensure safe and efficient operation.
5. Preventive Measures for Fuel Handling:
If the gas air compressor is powered by fuels such as gasoline, diesel, or propane, take appropriate precautions for fuel handling:
- Store fuel in approved containers and in well-ventilated areas away from ignition sources.
- Refuel the compressor in a well-ventilated outdoor area, following proper refueling procedures and avoiding spills.
- Handle fuel with caution, ensuring that there are no fuel leaks or spills near the compressor.
- Never smoke or use open flames near the compressor or fuel storage areas.
6. Use Proper Electrical Connections:
If the gas air compressor requires electrical power, follow these electrical safety precautions:
- Ensure that the electrical connections and wiring are properly grounded and in compliance with local electrical codes.
- Avoid using extension cords unless recommended by the manufacturer.
- Inspect electrical cords and plugs for damage before use.
- Do not overload electrical circuits or use improper voltage sources.
7. Secure the Compressor:
Ensure that the gas air compressor is securely positioned and stable during operation. Use appropriate mounting or anchoring methods, especially for portable compressors. This helps prevent tipping, vibrations, and movement that could lead to accidents or injuries.
8. Familiarize Yourself with Emergency Procedures:
Be familiar with emergency procedures and know how to shut off the compressor quickly in case of an emergency or malfunction. Have fire extinguishers readily available and know how to use them effectively. Develop an emergency action plan and communicate it to all personnel working with or around the compressor.
It’s crucial to prioritize safety when operating gas air compressors. By following these safety precautions and using common sense, you can minimize the risks associated with compressor operation and create a safer work environment for yourself and others.
editor by CX 2024-04-10
China OEM 90MPa High Pressure Argon Helium Gas Recovery Nitrogen Compressor Diaphragm Compressor for Sale with Good quality
Product Description
90Mpa High Pressure Helium Gas Recovery Nitrogen compressor Diaphragm Compressor
HangZhou CHINAMFG Gas Equipment Co., Ltd.,Is a leading diaphragm gas compressors manufacturer,
Our company has accumulated rich design and manufacturing experience,Has professional forging, casting, heat treatment, welding, machining, assembly test and other production and processing capabilities,And complete technical testing equipment and methods,We can design, manufacture and install products according to the parameters of customers.
The Nitrogen diaphragm compressor is a volume compressor of a special structure. It is the highest -level compression method in the field of gas compression. This compression method does not have secondary pollution. It has very good protection for the compressed gas. Good sealing, compressed gas is not polluted by lubricating oil and other CHINAMFG impurities. Therefore, it is suitable for compressing high purity, rare precious, flammable and explosive, toxic and harmful, corrosive, and high pressure gas.
Nitrogen Diaphragm compressor is a variant of the classic reciprocating compressor with backup and piston rings and rod seal. The compression of gas occurs by means of a flexible membrane, instead of an intake element. The back and forth moving membrane is driven by a rod and a crankshaft mechanism. Only the membrane and the compressor box come in touch with pumped gas. For this reason this construction is the best suited for pumping toxic and explosive gases. The membrane has to be reliable enough to take the strain of pumped gas. It must also have adequate chemical properties and sufficient temperature resistance.
The oxygen diaphragm compressor is mainly composed of motors, bases, crankshaft boxes, crankshaft connecting rods, cylinder components, oil and gas pipelines, electrical control systems, and some accessories.
Type of compression gas media by our diaphragm compressor :
Hydrogen, oxygen, nitrogen, carbon dioxide, carbon dioxide, sulfur dioxide, ozone, natural gas, toluene, biogas, hydrogen sulfide, ethylene, propylene, acylene, acetylene, chlorine, ammonia, nitrogen oxide, light, light Qi, hydrogen fluoride, sulfur dioxide, sulfur dioxide, sulfate dihydrium, etc.
The Nitrogen diaphragm compressor is consists of a 3 pieces of diaphragms. The diaphragm is clamped along the surrounding area by the hydraulic oil side and the process gas side of the process. The diaphragm is driven by the hydraulic driver in the film head to achieve the compression and transportation of the gas. The main body of the diaphragm compressor consists of 2 systems: the hydraulic oil system and the gas compression system, and the metal membrane separates these 2 systems.
Basically, the structure of the diaphragm compressor is divided into 2 parts: the hydraulic framework and the pneumatic force framework. During the compression process, there are 2 steps: the suction stroke and the delivery stroke.
Advantages of Nitrogen Diaphragm compressor:
- Good Sealing Performance .
- Cylinder has good heat dissipation performance .
- Completely Oil-free , the gas purity can be guaranteed to be higher than 99.999% .
- High Compression Ratios, High discharge pressure up to 1000bar .
- Long service life ,more than 20 years .
GL series Nitrogen diaphragm compressor :
Structure type : L type
Piston Travel : 110-180mm
Max Piston force : 20KN-90KN
Max discharge Pressure : 100MPa
Flow Rate Range :10-1000Nm3/h
Motor Power : 7.5KW-90KW
If you want get the commercial quote for a gas compressor, Customized is accepted , Pls provide the following information to us :
1.Flow rate: _______Nm3/h
2.Gas Media : ______ Hydrogen or Natural Gas or Oxygen or other gas ?
3.Inlet pressure: ___bar(g)
4.Inlet temperature:_____ºC
5.Outlet pressure:____bar(g)
6.Outlet temperature:____ºC
7.Installation location: _____indoor or outdoor?
8.Location ambient temperature: ____ºC
9.Power supply: _V/ _Hz/ _3Ph?
10.Cooling method for gas: air cooling or water cooing?
Wide variety and types of diaphragm compressor can be manufactured by our company such as hydrogen compressor , nitrogen compressor , helium compressor , natural gas compressor and etc .
Outlet pressure at 50bar 200 bar, 350 bar (5000 psi), 450 bar, 500 bar, 700 bar (10,000 psi), 900 bar (13,000 psi) and other pressure can be customized
Following is the hot-selling model for your reference :
GL series diaphragm compressor parameter table | ||||||||
Model | Cooling water consumption (t/h) | Displacement (Nm³/h) | Intake pressure (MPa) | Exhaust pressure (MPa) | Dimensions L×W×H(mm) | Weight (t) | Motor Power (kW) | |
1 | GL-10/160 | 1 | 10 | Atmospheric pressure | 16 | 2200×1200×1300 | 1.6 | 7.5 |
2 | GL-25/15 | 1 | 25 | Atmospheric pressure | 1.5 | 2200×1200×1300 | 1.6 | 7.5 |
3 | GL-20/12-160 | 1 | 20 | 1.2 | 16 | 2200×1200×1300 | 1.6 | 7.5 |
4 | GL-70/5-35 | 1.5 | 70 | 0.5 | 3.5 | 2000×1000×1200 | 1.6 | 15 |
5 | GL-20/10-150 | 1.5 | 20 | 1.0 | 15 | 2200×1200×1300 | 1.6 | 15 |
6 | GL-25/5-150 | 1.5 | 25 | 0.5 | 15 | 2200×1200×1300 | 1.6 | 15 |
7 | GL-45/5-150 | 2 | 45 | 0.5 | 15 | 2600×1300×1300 | 1.9 | 18.5 |
8 | GL-30/10-150 | 1.5 | 30 | 1.0 | 15 | 2300×1300×1300 | 1.7 | 11 |
9 | GL-30/5-160 | 2 | 30 | 0.5 | 16 | 2800×1300×1200 | 2.0 | 18.5 |
10 | GL-80/0.05-4 | 4.5 | 80 | 0.005 | 0.4 | 3500×1600×2100 | 4.5 | 37 |
11 | GL-110/5-25 | 1.4 | 110 | 0.5 | 2.5 | 2800×1800×2000 | 3.6 | 22 |
12 | GL-150/0.3-5 | 1.1 | 150 | 0.03 | 0.5 | 3230×1770×2200 | 4.2 | 18.5 |
13 | GL-110/10-200 | 2.1 | 110 | 1 | 20 | 2900×2000×1700 | 4 | 30 |
14 | GL-170/2.5-18 | 1.6 | 170 | 0.25 | 1.8 | 2900×2000×1700 | 4 | 22 |
15 | GL-400/20-50 | 2.2 | 400 | 2.0 | 5.0 | 4000×2500×2200 | 4.5 | 30 |
16 | GL-40/100 | 3.0 | 40 | 0.0 | 10 | 3700×1750×2000 | 3.8 | 30 |
17 | GL-900/300-500 | 3.0 | 900 | 30 | 50 | 3500×2350×2300 | 3.5 | 55 |
18 | GL-100/3-200 | 3.5 | 100 | 0.3 | 20 | 3700×1750×2150 | 5.2 | 55 |
19 | GL-48/140 | 3.0 | 48 | 0.0 | 14 | 3800×1750×2100 | 5.7 | 37 |
20 | GL-200/6-60 | 3.0 | 200 | 0.6 | 6.0 | 3800×1750×2100 | 5.0 | 45 |
21 | GL-140/6-200 | 5.0 | 140 | 0.6 | 20.0 | 3500×1380×2350 | 4.5 | 55 |
22 | GL-900/10-15 | 2.5 | 900 | 1.0 | 1.5 | 3670×2100×2300 | 6.5 | 37 |
23 | GL-770/6-20 | 4.5 | 770 | 0.6 | 2.0 | 4200×2100×2400 | 7.6 | 55 |
24 | GL-90/4-220 | 6.0 | 90 | 0.4 | 22.0 | 3500×2100×2400 | 7.0 | 45 |
25 | GL-1900/21-30 | 3.8 | 1800 | 2.1 | 3.0 | 3700×2000×2400 | 7.0 | 55 |
26 | GL-300/20-200 | 4.2 | 300 | 2.0 | 20.0 | 3670×2100×2300 | 6.5 | 45 |
27 | GL-200/15-200 | 4.0 | 200 | 1.5 | 20.0 | 3500×2100×2300 | 6.0 | 45 |
28 | GL-330/8-30 | 5.0 | 330 | 0.8 | 3.0 | 3570×1600×2200 | 4.0 | 45 |
29 | GL-150/6-200 | 5.0 | 150 | 0.6 | 20.0 | 3500×1600×2100 | 3.8 | 55 |
30 | GL-300/6-25 | 4.5 | 300 | 0.6 | 2.5 | 3450×1600×2100 | 4.0 | 45 |
Application of diaphragm compressor :
Food industry, petroleum industry, chemical industry, electronics industry, nuclear power plant, aerospace, industrial equipment, medicine, scientific research .
Our Certificate : CE and ISO certification
Our Service for diaphragm compressor :
1.Service time : 24*7 Hours
2.Customized Service
3.Perfect pre-sale,sale,after-sales service
4.FAT
5.Onsite commissioning Service
6.18 months warranty period
FAQ :
Q1.How about your after-sales service?
A: 1. Provide customers with intallation and commissioning online instructions.
2. Well-trained engineers available to overseas after-sales service.
Q2.What’s payment term?
A: T/T, L/C, D/P, Western Union, Trade Assurance and etc. Also we could accept USD, RMB, GBP, Euro and other currency.
Q3 : How long is your air compressor warranty?
A: Usually 1 year /12 Months for whole compressor machine, 2years/24months for air end (except maintenance spare parts.). And we can provide further warranty if necessary. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Onsite Commissioning |
---|---|
Warranty: | 18 Months |
Principle: | Reciprocating Compressor |
Application: | Back Pressure Type, Intermediate Back Pressure Type, High Back Pressure Type, Low Back Pressure Type |
Performance: | Explosion-Proof |
Mute: | Not Mute |
Customization: |
Available
|
|
---|
Can Gas Air Compressors Be Used for Well Drilling?
Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:
1. Air Drilling Method:
Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.
2. Benefits of Gas Air Compressors:
Gas air compressors offer several advantages for well drilling:
- Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
- Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
- Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
- Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.
3. Compressor Selection:
When selecting a gas air compressor for well drilling, several factors should be considered:
- Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
- Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
- Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.
4. Safety Considerations:
It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.
5. Other Considerations:
While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.
In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.
Can Gas Air Compressors Be Used for Natural Gas Compression?
Gas air compressors are not typically used for natural gas compression. Here’s a detailed explanation:
1. Different Compressed Gases:
Gas air compressors are specifically designed to compress atmospheric air. They are not typically designed or suitable for compressing natural gas. Natural gas, which is primarily composed of methane, requires specialized compressors designed to handle the unique properties and characteristics of the gas.
2. Safety Considerations:
Natural gas compression involves handling a flammable and potentially hazardous substance. Compressing natural gas requires specialized equipment that meets stringent safety standards to prevent leaks, minimize the risk of ignition or explosion, and ensure the safe handling of the gas. Gas air compressors may not have the necessary safety features or materials to handle natural gas safely.
3. Equipment Compatibility:
Natural gas compression systems typically include components such as gas compressors, gas coolers, separators, and control systems that are specifically designed and engineered for the compression and handling of natural gas. These components are built to withstand the specific demands and conditions associated with natural gas compression, including the high pressures and potential presence of impurities.
4. Efficiency and Performance:
Compressing natural gas requires specialized compressors that can handle the high-pressure ratios and volumetric flow rates associated with the gas. Gas air compressors are generally not designed to achieve the same compression ratios and performance levels required for natural gas compression. Using gas air compressors for natural gas compression would likely result in inefficient operation and suboptimal performance.
5. Regulatory Compliance:
Compressing natural gas is subject to various regulations and standards to ensure safety, environmental protection, and compliance with industry guidelines. These regulations often dictate specific requirements for equipment, materials, and operating procedures in natural gas compression systems. Gas air compressors may not meet these regulatory requirements for natural gas compression.
6. Industry Standards and Practices:
The natural gas industry has well-established standards and best practices for equipment selection, installation, and operation in gas compression systems. These standards are based on the specific requirements and characteristics of natural gas. Gas air compressors do not align with these industry standards and practices, which are essential for safe and efficient natural gas compression.
In summary, gas air compressors are not suitable for natural gas compression. Natural gas compression requires specialized equipment designed to handle the unique properties and safety considerations associated with the gas. Compressors specifically engineered for natural gas compression offer the necessary performance, safety features, and regulatory compliance required for efficient and reliable operation in natural gas compression systems.
What Safety Precautions Should Be Taken When Operating Gas Air Compressors?
Operating gas air compressors safely is essential to prevent accidents, injuries, and equipment damage. It’s important to follow proper safety precautions to ensure a safe working environment. Here’s a detailed explanation of the safety precautions that should be taken when operating gas air compressors:
1. Read and Follow the Manufacturer’s Instructions:
Before operating a gas air compressor, carefully read and understand the manufacturer’s instructions, user manual, and safety guidelines. Follow the recommended procedures, maintenance schedules, and any specific instructions provided by the manufacturer.
2. Provide Adequate Ventilation:
Gas air compressors generate exhaust fumes and heat during operation. Ensure that the operating area is well-ventilated to prevent the accumulation of exhaust gases, which can be harmful or even fatal in high concentrations. If operating indoors, use ventilation systems or open windows and doors to allow fresh air circulation.
3. Wear Personal Protective Equipment (PPE):
Wear appropriate personal protective equipment (PPE) when operating a gas air compressor. This may include safety glasses, hearing protection, gloves, and sturdy footwear. PPE helps protect against potential hazards such as flying debris, noise exposure, and hand injuries.
4. Perform Regular Maintenance:
Maintain the gas air compressor according to the manufacturer’s recommendations. Regularly inspect the compressor for any signs of wear, damage, or leaks. Keep the compressor clean and free from debris. Replace worn-out parts and components as needed to ensure safe and efficient operation.
5. Preventive Measures for Fuel Handling:
If the gas air compressor is powered by fuels such as gasoline, diesel, or propane, take appropriate precautions for fuel handling:
- Store fuel in approved containers and in well-ventilated areas away from ignition sources.
- Refuel the compressor in a well-ventilated outdoor area, following proper refueling procedures and avoiding spills.
- Handle fuel with caution, ensuring that there are no fuel leaks or spills near the compressor.
- Never smoke or use open flames near the compressor or fuel storage areas.
6. Use Proper Electrical Connections:
If the gas air compressor requires electrical power, follow these electrical safety precautions:
- Ensure that the electrical connections and wiring are properly grounded and in compliance with local electrical codes.
- Avoid using extension cords unless recommended by the manufacturer.
- Inspect electrical cords and plugs for damage before use.
- Do not overload electrical circuits or use improper voltage sources.
7. Secure the Compressor:
Ensure that the gas air compressor is securely positioned and stable during operation. Use appropriate mounting or anchoring methods, especially for portable compressors. This helps prevent tipping, vibrations, and movement that could lead to accidents or injuries.
8. Familiarize Yourself with Emergency Procedures:
Be familiar with emergency procedures and know how to shut off the compressor quickly in case of an emergency or malfunction. Have fire extinguishers readily available and know how to use them effectively. Develop an emergency action plan and communicate it to all personnel working with or around the compressor.
It’s crucial to prioritize safety when operating gas air compressors. By following these safety precautions and using common sense, you can minimize the risks associated with compressor operation and create a safer work environment for yourself and others.
editor by CX 2024-04-10
China supplier Gd-150/2-20 Best Price High Flow Helium Nitrogen Gas Oil-Free Diaphragm Compressor small air compressor
Product Description
Reciprocating Completely Oil-Free Diaphragm Compressor
( Blue Font To View Hyperlink)
Our company specialize in producing various kinds of compressor products, such as:Diaphragm compressor,Piston compressor, Air compressors,Nitrogen generator,Oxygen generator ,Gas cylinder,etc. All products can be customized according to your parameters and other requirements.
Process Principle
Diaphragm compressor according to the needs of the user, choose the right type of compressor to meet the needs of the user. The diaphragm of the metal diaphragm compressor completely separates the gas from the hydraulic oil system to ensure the purity of the gas and no pollution to the gas. At the same time, advanced manufacturing technology and accurate membrane cavity design technology are adopted to ensure the service life of the diaphragm compressor diaphragm. No pollution: the metal diaphragm group completely separates the process gas from the hydraulic oil and lubricating oil parts to ensure the gas purity.
Main Structure
Diaphragm compressor structure is mainly composed of motor, base, crankcase, crankshaft linkage mechanism, cylinder components, crankshaft connecting rod, piston, oil and gas pipeline, electric control system and some accessories.
Gas Media
Our compressors can compress ammonia, propylene, nitrogen, oxygen, helium, hydrogen, hydrogen chloride, argon, hydrogen chloride, hydrogen sulfide, hydrogen bromide, ethylene, acetylene, etc.(Nitrogen diaphragm compressor,bottle filling compressor,oxygen diaphragm compressor)
GD Model Instruction
GD diaphragm compressor is a special structure of the volumetric compressor, is the highest level of compression in the field of gas compression, this compression method Without secondary pollution, it can ensure the purity of gas is more than 5, and it has very good protection against compressed gas. It has the characteristics of large compression ratio, good sealing performance, and the compressed gas is not polluted by lubricating oil and other CHINAMFG impurities. Therefore, it is suitable for compressing high-purity, rare and precious, flammable, explosive, toxic, harmful, corrosive and high-pressure gases. The compression method is generally specified in the world for compressing high-purity gas, flammable and explosive gas, toxic gas and oxygen. Etc. (such as nitrogen diaphragm compressor, oxygen diaphragm compressor, hydrogen sulfide diaphragm compressor, argon diaphragm compressor, etc.).
GD diaphragm compressor for my company independent research and development of large diaphragm compressor, its advantages are: high compression ratio, large displacement, large piston force, stable running, high exhaust pressure, etc, has been widely used and petroleum chemical industry and nuclear power plant, and so on,.Two GD type diaphragm compressor cylinder arrangement for symmetrically arranged in parallel, more suitable for the petrochemical and nuclear power plant such as uninterrupted operation for a long time, because of the cylinder body symmetry, run up against other arrangement of diaphragm compressor is the most stable operation, running, small vibration from the ground clearance is more convenient in maintenance.
Advantages
1.Good sealing performance
Diaphragm compressor is a kind of special structure displacement compressor.The gas does not need lubrication,the sealing performance is good,the compression medium does not contact with any lubricant,and there will be no pollution in the compression process.It is especially suitable for high purity(99.9999%),rate,extremely corrosive,toxic and harmful,inflammable and explosive.Compression,transportation and bottle filling of radioactive gases.Membrane head is sealed with inlaid double O-ring,and its sealing effect is far better than that of open type.
2.Cylinder has good heat dissipation performance
The working cylinder of diaphragm compressor has good heat dissipation performance and is close to isothermal compression.It can adopt higher compression ratio and is suitable for compressing high-pressure gas.
3.Compressor speed is low and service life of vulnerable parts is prolonged.The new type of diaphragm cavity curve improve the volume efficiency of the compressor,optimize the value type,and adopt special heat treatment method for diaphragm,which greatly improves the service life of the compressor.
4.The high efficiency cooler is adopted,which makes the whole machine low in temperature and high in efficiency.The service life of lubricating oil,O-ring and value spring can be prolonged appropriately .Under the condition of meeting the buyer’s technological parameters,the structure is more advanced,reasonable and energy-saving.
5.The diaphragm rupture alarm structure is advanced,reasonable and reliable.The diaphragm installation has no directionality and is easy to replace.
6.The parts and components of the whole equipment are concentrated on a skid-mounted chassis,which is convenient for transportation,installation and management.
Reference Operating Parameter:
Model | GD-120/4-80 | Remarks | |
Volume Flow | Nm3/h | 120 | No-Standard |
Working pressure | Suction pressure: | 0.4MPa | No-Standard |
Exhaust pressure: | 8.0MPa | No-Standard | |
Cooling Method | Water-Cooled | No-Standard | |
Intake temperature | °C | 0~30 | |
Inlet pressure | MPa | 0.3~0.4 | |
Discharge temperature | °C | ≤45ºC | |
Noise | dB(A) | ≤80 | |
Power/Frequence | V/Hz | 380/50 | No-Standard |
Motor Power | Kw | 22KW~200KW | No-Standard |
Crankshaft speed | r/min | 420 | |
Overall dimension | L/mm | 3000 | |
W/mm | 1600 | ||
H/mm | 1400 |
Reference Specification
1 | GD-120/4-80 | 3.0 | 120 | 0.4 | 8.0 | 3000x1600x1400 | 30 | |
2 | GD-130/0.98-11 | 3.0 | 130 | 0.098 | 1.1 | 3000x1800x1600 | 4.0 | 30 |
3 | GD-150/2-20 | 3.0 | 150 | 0.2 | 2.0 | 3000x1800x1600 | 4.0 | 37 |
4 | GD-100/0.1-5 | 4.0 | 100 | 0.01 | 0.5 | 2800X1500X1500 | 3.0 | 18.5 |
5 | GD-100/5.5-200 | 5.0 | 100 | 0.55 | 20 | 3200X2000X1600 | 4.5 | 45 |
6 | GD-80/0.12-4 | 5.0 | 80 | 0.012 | 0.4 | 2800x1600x 1500 | 3.8 | 15 |
7 | GD-60/0.3-6 | 4.0 | 60 | 0.03 | 0.6 | 2800x1600x1500 | 4.0 | 15 |
8 | GD-70/0.1-8 | 3.8 | 70 | 0.01 | 0.8 | 3000 x 1600×1250 | 5.0 | 18.5 |
9 | GD-40/0.02-160 | 5.0 | 40 | 0.02 | 16 | 2800x1460x1530 | 3.0 | 22 |
10 | GD-100/0.5-6 | 2.0 | 100 | 0.05 | 0.6 | 3000x2000x1560 | 6.0 | 18.5 |
11 | GD-36/1-150 | 4.0 | 36 | 0.1 | 15 | 3000x1500x1500 | 4.0 | 45 |
12 | GD-35/0.7-300 | 4.0 | 35 | 0.07 | 30 | 3000x1600x1500 | 4.0 | 22 |
13 | GD-500/15-35 | 4.5 | 500 | 1.5 | 3.5 | 3000x2000x1700 | 4.0 | 45 |
14 | GD-150/15-210 | 4.5 | 150 | 1.5 | 21 | 3200x1700x1600 | 4.0 | 45 |
15 | GD-120/8-220 | 4.5 | 120 | 0.8 | 22 | 3200x1700x1600 | 3.8 | 45 |
16 | GD-100/9 | 4.5 | 100 | 0.0 | 0.9 | 3200x1700x1800 | 4.5 | 22 |
17 | GD-100/1.5-150 | 4.5 | 100 | 0.15 | 15 | 3200x1700x1800 | 4.5 | 45 |
18 | GD-40/30 | 4.5 | 40 | 0.0 | 3.0 | 3200x1700x1800 | 4.0 | 18.5 |
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Principle: | Reciprocating Compressor |
---|---|
Application: | High Back Pressure Type |
Performance: | Low Noise, Variable Frequency, Explosion-Proof, Corrosion-Proof |
Mute: | Mute |
Lubrication Style: | Oil-free |
Drive Mode: | Electric |
Customization: |
Available
|
|
---|
What Is the Noise Level of Gas Air Compressors?
The noise level of gas air compressors can vary depending on several factors, including the compressor’s design, engine type, operating conditions, and the presence of noise-reducing features. Here’s a detailed explanation:
1. Compressor Design:
The design of the gas air compressor can influence its noise level. Some compressors are engineered with noise reduction in mind, utilizing features such as sound insulation, vibration dampening materials, and mufflers to minimize noise generation. Compressors with enclosed cabinets or acoustic enclosures tend to have lower noise levels compared to open-frame compressors.
2. Engine Type:
The type of engine used in the gas air compressor can impact the noise level. Gas air compressors typically use internal combustion engines powered by gasoline or propane. Gasoline engines tend to produce higher noise levels compared to diesel engines or electric motors. However, advancements in engine technology have led to quieter gasoline engines with improved noise control.
3. Operating Conditions:
The operating conditions of the gas air compressor can affect the noise level. Factors such as the load capacity, speed of operation, and ambient temperature can influence the amount of noise generated. Compressors operating at higher loads or speeds may produce more noise compared to those running at lower levels.
4. Noise-Reducing Features:
Some gas air compressors are equipped with noise-reducing features to minimize sound emissions. These may include built-in silencers, acoustic enclosures, or noise-absorbing materials. Such features help dampen the noise produced by the compressor and reduce its overall noise level.
5. Manufacturer Specifications:
Manufacturers often provide noise level specifications for their gas air compressors. These specifications typically indicate the sound pressure level (SPL) in decibels (dB) at a specific distance from the compressor. It is important to refer to these specifications to get an idea of the expected noise level of a particular compressor model.
6. Distance and Location:
The distance between the gas air compressor and the listener can impact the perceived noise level. As sound waves disperse, the noise level decreases with distance. Locating the compressor in an area that is isolated or distant from occupied spaces can help minimize the impact of noise on the surrounding environment.
It is important to note that gas air compressors, especially those used in industrial or heavy-duty applications, can generate substantial noise levels. Occupational health and safety regulations may require the use of hearing protection for individuals working in close proximity to loud compressors.
Overall, the noise level of gas air compressors can vary, and it is advisable to consult the manufacturer’s specifications and consider noise-reducing features when selecting a compressor. Proper maintenance, such as regular lubrication and inspection of components, can also help minimize noise levels and ensure optimal performance.
What Is the Impact of Altitude on Gas Air Compressor Performance?
Altitude can have a significant impact on the performance of gas air compressors. Here’s a detailed explanation:
1. Decreased Air Density:
As altitude increases, the air density decreases. This reduction in air density affects the performance of gas air compressors, primarily because compressors rely on the intake of ambient air to generate compressed air. With lower air density at higher altitudes, the compressor’s ability to draw in a sufficient volume of air is reduced.
2. Reduced Compressor Output:
The decrease in air density directly affects the compressor’s output. Gas air compressors may experience a decrease in their maximum airflow and pressure capabilities at higher altitudes. This reduction in output can impact the compressor’s efficiency and its ability to deliver the required compressed air for various applications.
3. Increased Compressor Workload:
At higher altitudes, gas air compressors need to work harder to maintain the desired level of compressed air output. The reduced air density means the compressor must compress a larger volume of air to achieve the same pressure as it would at lower altitudes. This increased workload can lead to higher energy consumption, increased wear and tear on the compressor components, and potentially decreased overall performance and lifespan.
4. Engine Power Loss:
If the gas air compressor is powered by an internal combustion engine (such as gasoline or diesel), altitude can also impact the engine’s performance. As the air density decreases, the engine may experience a power loss due to reduced oxygen availability for combustion. This can result in reduced engine horsepower and torque, affecting the compressor’s ability to generate compressed air.
5. Considerations for Proper Sizing:
When selecting a gas air compressor for use at higher altitudes, it is crucial to consider the specific altitude conditions and adjust the compressor’s size and capacity accordingly. Choosing a compressor with a higher airflow and pressure rating than required at sea level can help compensate for the reduced performance at higher altitudes.
6. Maintenance and Adjustments:
Regular maintenance and adjustments are necessary to optimize the performance of gas air compressors operating at higher altitudes. This includes monitoring and adjusting the compressor’s intake systems, fuel-to-air ratio, and ignition timing to account for the reduced air density and maintain proper combustion efficiency.
In summary, altitude has a notable impact on the performance of gas air compressors. The decrease in air density at higher altitudes leads to reduced compressor output, increased compressor workload, potential engine power loss, and considerations for proper sizing and maintenance. Understanding these effects is crucial for selecting and operating gas air compressors effectively in various altitude conditions.
Are There Different Types of Gas Air Compressors Available?
Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:
1. Reciprocating Gas Air Compressors:
Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.
2. Rotary Screw Gas Air Compressors:
Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.
3. Rotary Vane Gas Air Compressors:
Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.
4. Centrifugal Gas Air Compressors:
Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.
5. Oil-Free Gas Air Compressors:
Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.
6. Portable Gas Air Compressors:
Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.
7. High-Pressure Gas Air Compressors:
High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.
8. Biogas Air Compressors:
Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.
These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.
editor by CX 2024-04-09