Product Description
Product Parameters
Model | Power(Kw) | Free air delivery(m³/min) | Weight(kg) | Size(mm) | Pipe Diamater | ||||
0.3Mpa | 0.4MPa | 0.5MPa | Length | Width | Height | ||||
MQ37A/3 |
37 |
11.88 |
/ |
/ |
1170 |
2100 |
1250 |
1730 |
DN65 |
MQ37A/4 |
37 |
/ |
10.5 |
/ |
1170 |
2100 |
1250 |
1730 |
DN65 |
MQ37A/5 |
37 |
/ |
/ |
9.2 |
1170 |
2100 |
1250 |
1730 |
DN65 |
MQ45A/3 |
45 |
14 |
/ |
/ |
1185 |
2600 |
1650 |
2050 |
DN100 |
MQ45A/4 |
45 |
/ |
12.5 |
/ |
1185 |
2100 |
1250 |
1730 |
DN65 |
MQ45A/5 |
45 |
/ |
/ |
10.32 |
1185 |
2100 |
1250 |
1730 |
DN65 |
MQ55A/3 |
55 |
17.66 |
/ |
/ |
1185 |
2600 |
1650 |
2050 |
DN100 |
MQ55A/4 |
55 |
/ |
15.27 |
/ |
1185 |
2600 |
1500 |
1900 |
DN80 |
MQ55A/5 |
55 |
/ |
/ |
14.13 |
1185 |
2600 |
1500 |
1900 |
DN80 |
MQ75A/3 |
75 |
23.64 |
/ |
/ |
2280 |
2600 |
1650 |
2050 |
DN100 |
MQ75A/4 |
75 |
/ |
20.19 |
/ |
2280 |
2600 |
1500 |
1900 |
DN80 |
MQ75A/5 |
75 |
/ |
/ |
18.4 |
2280 |
2600 |
1500 |
1900 |
DN80 |
MQ90A/3 | 90 | 29.63 | / | / | 3000 | 2900 | 1880 | 2080 | DN100 |
MQ90A/4 | 90 | / | 24 | / | 3000 | 2700 | 1630 | 2100 | DN125 |
MQ90A/5 | 90 | / | / | 21.25 | 3000 | 2700 | 1630 | 1900 | DN80 |
MQ110A/3 | 110 | 35.77 | / | / | 3160 | 3000 | 2000 | 2280 | DN125 |
MQ110A/4 | 110 | / | 29.69 | / | 3160 | 3000 | 2000 | 2280 | DN125 |
MQ110A/5 | 110 | / | / | 28 | 3160 | 3000 | 2000 | 2280 | DN125 |
MQ132A/3 | 132 | 40.27 | / | / | 4640 | 3000 | 2000 | 2280 | DN125 |
MQ132A/4 | 132 | / | 35.62 | / | 4640 | 3000 | 2000 | 2280 | DN125 |
MQ132A/5 | 132 | / | / | 30.5 | 4640 | 3000 | 2000 | 2280 | DN125 |
MQ160A/3 | 160 | 50.1 | / | / | 4900 | 3600 | 2200 | 2280 | DN150 |
MQ160A/4 | 160 | / | 47 | / | 4900 | 3600 | 2200 | 2280 | DN150 |
MQ160A/5 | 160 | / | / | 42 | 4900 | 3600 | 2200 | 2280 | DN150 |
MQ185A/3 | 185 | 61 | / | / | 5600 | 3800 | 2300 | 2400 | DN150 |
MQ185A/4 | 185 | / | 50 | / | 5600 | 3800 | 2300 | 2400 | DN150 |
MQ185A/5 | 185 | / | / | 45 | 5600 | 3800 | 2300 | 2400 | DN150 |
MQ200A/3 | 200 | 63 | / | / | 5850 | 3800 | 2300 | 2400 | DN150 |
MQ200A/4 | 200 | / | 57 | / | 5850 | 3800 | 2300 | 2400 | DN150 |
MQ200A/5 | 200 | / | / | 51.5 | 5850 | 3800 | 2300 | 2400 | DN150 |
MQ220A/3 | 220 | 65 | / | / | 6600 | 4000 | 2400 | 2600 | DN200 |
MQ220A/4 | 220 | / | 62 | / | 6600 | 4000 | 2400 | 2600 | DN200 |
MQ220A/5 | 220 | / | / | 55 | 6600 | 4000 | 2400 | 2600 | DN200 |
MQ250A/3 | 250 | 67.5 | / | / | 6900 | 4000 | 2400 | 2600 | DN200 |
MQ250A/4 | 250 | / | 65 | / | 6900 | 4000 | 2400 | 2600 | DN200 |
MQ250A/5 | 250 | / | / | 61 | 6900 | 4000 | 2400 | 2600 | DN200 |
Installation Instructions
Operation Instructions:
A:Before Operation:
- Confirm the voltage of the power supply and the power indicator light is lit.
- Please open the leak valve of the oil & gas tank, drain the condensed water and immediately close the leak valve when oil leaks out.
- Please check the oil level and keep it between indicator oil level.
- Water cooled system , confirm that cooling water supply is normal.
- When generator driving the belt, please check the belt tension correctly, not too loose or too tight.
B:Start up
- Main power switch in.
- Press the start button to turn on the motor, working indicator light is on.
- Check the discharge pressure gauge and lubricating oil pressure gauge are in correct indication.
C:Operation
Please keep the exhaust temperature between 75ºC-95ºC to avoid condensation and precipitation and emulsify the oil.
D:Stop
- Press the “off” button, about 10-15 seconds later, the delay electromagnetic valve acts, and the compressor stops running.
- Turn off the power.
- Don’t use the emergency stop button in case of non emergency.
E: Precautions:
- For initial start-up and after motor maintenance, determine the running direction of the press (as indicated by the arrow).
- Do not mix different brand of river lubricating oil.
- Change the consumables, lubricating oil and detail operation method, please refer the instruction manual.
/* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Can Gas Air Compressors Be Used for Well Drilling?
Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:
1. Air Drilling Method:
Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.
2. Benefits of Gas Air Compressors:
Gas air compressors offer several advantages for well drilling:
- Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
- Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
- Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
- Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.
3. Compressor Selection:
When selecting a gas air compressor for well drilling, several factors should be considered:
- Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
- Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
- Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.
4. Safety Considerations:
It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.
5. Other Considerations:
While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.
In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.
Can Gas Air Compressors Be Used for Pneumatic Tools?
Yes, gas air compressors can be used for pneumatic tools. Here’s a detailed explanation:
1. Versatile Power Source:
Gas air compressors, powered by gasoline or diesel engines, provide a portable and versatile power source for operating pneumatic tools. They eliminate the need for electrical power supply, making them suitable for remote locations or construction sites where electricity may not be readily available.
2. High Power Output:
Gas air compressors typically offer higher power output compared to electric compressors of similar size. This high power output enables gas compressors to deliver the necessary air pressure and volume required by pneumatic tools, ensuring optimal tool performance.
3. Mobility and Portability:
Gas air compressors are often designed with mobility and portability in mind. They are compact and equipped with wheels or handles, allowing for easy transportation to different job sites. This mobility is advantageous when using pneumatic tools in various locations or when working in confined spaces.
4. Continuous Operation:
Gas air compressors can provide continuous air supply for pneumatic tools without the need for frequent pauses or recharging. As long as there is an adequate fuel supply, gas compressors can operate for extended periods, allowing uninterrupted use of pneumatic tools for tasks such as drilling, nailing, sanding, or painting.
5. Suitable for High-Demand Applications:
Pneumatic tools used in heavy-duty applications often require a robust air supply to meet their performance requirements. Gas air compressors can generate higher air flow rates and maintain higher operating pressures, making them suitable for high-demand pneumatic tools like jackhammers, impact wrenches, or sandblasters.
6. Flexibility in Compressor Size:
Gas air compressors are available in various sizes and capacities, allowing users to choose the compressor that best matches the air demands of their pneumatic tools. From small portable compressors for light-duty tasks to larger industrial-grade compressors for heavy-duty applications, there is a wide range of options to suit different tool requirements.
7. Reduced Dependency on Electrical Infrastructure:
Using gas air compressors for pneumatic tools reduces reliance on electrical infrastructure. In situations where the electrical power supply is limited, unreliable, or expensive, gas compressors offer a viable alternative, ensuring consistent tool performance without concerns about power availability.
It’s important to note that gas air compressors emit exhaust gases during operation, so proper ventilation is necessary when using them in enclosed spaces to ensure the safety of workers.
In summary, gas air compressors can effectively power pneumatic tools, offering mobility, high power output, continuous operation, and suitability for various applications. They provide a reliable and portable solution for utilizing pneumatic tools in locations where electrical power supply may be limited or unavailable.
What Industries Commonly Use Gas Air Compressors?
Gas air compressors find applications in various industries where compressed air is required for powering tools, equipment, and systems. These compressors are valued for their portability, versatility, and ability to provide high-pressure air. Here’s a detailed explanation of the industries that commonly use gas air compressors:
1. Construction Industry:
The construction industry extensively utilizes gas air compressors for a wide range of tasks. Compressed air is used to power pneumatic tools such as jackhammers, nail guns, impact wrenches, and concrete breakers. Gas air compressors provide the necessary airflow and pressure to operate these tools efficiently, making them ideal for construction sites.
2. Mining Industry:
In the mining industry, gas air compressors play a vital role in various operations. Compressed air is used to power pneumatic tools for drilling, rock blasting, and excavation. It is also employed in ventilation systems, conveying systems, and pneumatic control devices in mines. Gas air compressors are valued for their durability and ability to operate in rugged and remote mining environments.
3. Oil and Gas Industry:
The oil and gas industry relies on gas air compressors for numerous applications. They are used for well drilling operations, powering pneumatic tools, and maintaining pressure in oil and gas pipelines. Gas air compressors are also utilized in natural gas processing plants, refineries, and petrochemical facilities for various pneumatic processes and equipment.
4. Manufacturing and Industrial Sector:
In the manufacturing and industrial sector, gas air compressors are extensively used in different applications. They provide compressed air for pneumatic tools, such as air-powered drills, sanders, grinders, and spray guns. Compressed air is also used in manufacturing processes such as material handling, assembly line operations, and pneumatic control systems.
5. Automotive Industry:
The automotive industry utilizes gas air compressors for a variety of tasks. Compressed air is employed in automotive assembly plants for pneumatic tools, paint spraying booths, and pneumatic control systems. Gas air compressors are also used in auto repair shops for powering air tools, tire inflation, and operating pneumatic lifts.
6. Agriculture and Farming:
Gas air compressors have applications in the agriculture and farming sector. They are used for tasks such as powering pneumatic tools for crop irrigation, operating pneumatic seeders or planters, and providing compressed air for farm maintenance and repair work. Portable gas air compressors are particularly useful in agricultural settings where electricity may not be readily available.
7. Food and Beverage Industry:
In the food and beverage industry, gas air compressors are employed for various pneumatic processes and equipment. They are used in food packaging operations, pneumatic conveying systems for ingredients and finished products, and air-powered mixing and blending processes. Gas air compressors in this industry are designed to meet strict hygiene and safety standards.
8. Pharmaceutical and Healthcare Sector:
The pharmaceutical and healthcare sector utilizes gas air compressors for critical applications. Compressed air is used in medical devices, dental equipment, laboratory instruments, and pharmaceutical manufacturing processes. Gas air compressors in this industry must adhere to stringent quality standards and maintain air purity.
These are just a few examples of the industries that commonly use gas air compressors. Other sectors, such as power generation, aerospace, marine, and chemical industries, also rely on gas air compressors for specific applications. The versatility and reliability of gas air compressors make them indispensable in numerous industries where compressed air is a vital resource.
<img src="https://img.hzpt.com/img/air-compressor/air-compressor-L1.webp" alt="China wholesaler Best-Selling Medium and Low Pressure Price China Single-Stage Drive Gas Screw Air Compressor air compressor for car”><img src="https://img.hzpt.com/img/air-compressor/air-compressor-L2.webp" alt="China wholesaler Best-Selling Medium and Low Pressure Price China Single-Stage Drive Gas Screw Air Compressor air compressor for car”>
editor by lmc 2024-10-21
China manufacturer V Type High-Pressure 400bar Piston Compressor Low Pressure 12 Barg CHINAMFG air compressor repair near me
Product Description
Advantages of CHINAMFG Process Gas Compressor:
1. High quality material, Stable & Reliable operation
2. Low Maintenance cost & Low noise
3. Easy to install on site and connect with the user’s pipeline system to operate
4. Alarm automatic shutdown to protection machine function
5. Corrosion Resistance
Lubrication includes : Oil lubrication, low-oil lubrication and oil free lubrication;
Cooling method includes: Water cooling, and air cooling.
Installation type includes: Stationary and Skid Mounting.
1. Name: Diesel Enginee Driven 200bar High pressure Skid Mounted Air Compressor
2. Model: LG•V-20/10-200
3. Type: V type high pressure Piston Compressor & Low Pressure Screw Compressor
4. Driven method: Diesel Enginee driven (double output Axles) with Cum mins diesel engine or Germany Manniheim diesel engine
The low pressure screw air compressor and the high pressure piston compressor are separately mounted on the 2 output axles of the diesel engine. The screw machine is directly driven by the diesel engine, and the piston machine is connected with the diesel engine through the reducer.
5. Cooling method: Closed water cooling (Each cooler and unit is water-cooled, and the heat- exchanged water is exchanged twice through the fan to meet the heat exchange requirements of the unit.)
6. Touch Screen display: High degree of automation, reliable performance, on behalf of the current technical level, to ensure that the MTBF 100 hours target.
For this Screw + Piston air compressor is mainly used for pipeline pressure test, sweeping line, gas lift and other projects in oil exploitation, and can also be used as a gas source with air volume above 10m3/min and pressure above to 15Mpa, 20MPa, 30Mpa, 40Mpa etc for other projects in the national economy. The compressor allows the user to step down pressure to use.
The compressor unit is in skid-mounted form, consisting of compressor main compressor, diesel engine, gas pipeline system, cooling system and control system. It is composed of a unit and is mounted on the whole skid-mounted and inner a metal cabinet.
The cabinet body is made of a metal cover, the top of the cover is opened with a vent, the exhaust port of the diesel engine is located outside the cover, and the exhaust muffler of the diesel engine is mounted on the top of the cover. The inside of the cabinet is provided with a lighting lamp, the door is provided with a lock, the front part is set as an operation surface, and the instrument operation cabinet leading to the unit is installed in the operation box. The lower part of the whole set is equipped with a lifting device, which should have sufficient strength to ensure the frequent lifting and transportation needs. Rust and paint inside and outside. The size of the whole set is controlled at 7000×2200×2200 (mm)
The whole compressor has complete performance, reliable quality, easy operation and high work efficiency. It is suitable for field and harsh construction environment (water, dustproof and shockproof). It is a mature styling product with reliable control and easy maintenance.
Inquiry to us!
Note:for the other customizing process gas compressor, please kindly send below information to our factory to calculate the producing cost for your item.
Clients’ inquiries should contain related parameters
A. The gas compression medium
B. Gas composition? or the gas purity?
C. The flow rate: _____Nm3/hr
D. Inlet pressure: _____ Bar (gauge pressure or absolute pressure)
E. Discharge pressure: _____ Bar (gauge pressure or absolute pressure)
F. Inlet temperature
G.Discharge temperature
H. Cooling water temperature as well as other technical requirement.
CHINAMFG TECHNOLOGY ZheJiang CO.,LTD is a high-tech joint-stock enterprise which specializes in the development and designing ,manufacturing and installation, mating remolding and sales service of compressors as well as the corresponding pre-and post-position purifying equipment. CHINAMFG offers you various range of gas compressor like normal standard screw compressor, piston compressor, diaphragm compressor, CNG compressor, CO2 compressor, Hydrogen compressor, Nitrogen booster compressor, etc. for your process handling needs. These products are developed with the highest level of professionalism and innovation. The premium grade raw material and advanced technology is utilized in the production process, which assists us in giving required shape, design and finish to the finished products. The products are then sent to the Quality Control Department for stringent quality tests on various parameters. We view client satisfaction as the witness of our products’ utility and application in all environments. In line with it, we have developed a general framework for comprehending new developments in the compressor industry.
Manufacture special customize Reciprocating Compressor
Besides general gas such as air, the compressed medium may also include flammable and explosive gas, such Natural Gas and Coal Gas as well as special gas which are toxic and corrosive. CHINAMFG has taken a series of technical measures in aspects such as structure material, explosion prevention, anto-control and protection to guarantee safety and reliability. Products are widely used in variety of industries such as Petrochemicals, Petroleum, Chemical textile, Gas Separation, Metallurgy Mine Machinery, Fine Chemicals, Pharmaceutical Chemicals, Energy Chemicals, Machinery Industry, Electronics Industry, Agriculture, Animal Husbandry and Defense Industry, Astronomy, Aerospace, Medical and other fields.
0 | ||||||||||
No. | Model | Compressed medium | F.A.D (Nm3/min) | Inlet Pressure ( Mpa) |
Exhuast Pressure (Mpa) |
Power (KW) |
Speed r/min |
Dimension (L×W×H)mm |
N.W Weight (t) |
Voltage V |
1 | 2D3.5W-14/0.3~6 | Regenerated hydrogen gas | 14N | 0.03 | 0.6 | 90 | 485 | 5200*1800*2500 | 8 | 380 |
2 | 2D3.5W-5.7/6.5 | Regenerated gas | 5.7N | 0.02 | 0.65 | 45 | 485 | 5200*1800*2500 | 5.5 | 380 |
3 | 2D3.5W-17/0.4~12.5 | Synthetic tail gas | 17N | 0.04 | 1.25 | 132 | 485 | 5200*1800*2500 | 5.5 | 380 |
4 | 2D3.5W-20/5 | Feed gas | 20N | 0.002 | 0.5 | 132 | 485 | 5030*2000*2550 | 4.5 | 380 |
5 | 2D3.5W-25/9~49 | Replenish hydrogen | 25N | 0.9 | 4.9 | 132 | 485 | 5400*3500*2200 | 8 | 380 |
6 | 2D3.5W-79/26~49 | Recycle hydrogen | 79N | 2.6 | 4.9 | 160 | 485 | 5400*3500*2030 | 8 | 380 |
7 | 2D3.5W-20/0.1~6 | Feed hydrogen | 20N | 0.01 | 0.6 | 132 | 485 | 4750*2200*2550 | 4.5 | 380 |
8 | 2D3.5W-54/0.02~0.5 | coal gas | 54 | 0.002 | 0.05 | 110 | 585 | 4560*1800*2550 | 5.5 | 380 |
9 | 2D3.5W-16.7/0.2~8 | Synthetic tail gas | 16.7N | 0.01~0.04 | 0.8 | 132 | 485 | 4600*1950*2200 | 4.5 | 380 |
10 | 2D3.5W-36.7/0.3~2.8 | Analytical gas | 36.7N | 0.03 | 0.28 | 160 | 485 | 4190*1800*2490 | 5 | 380 |
11 | 2D3.5W-82/12~22 | Recycle hydrogen | 82N | 1.2 | 2.2 | 160 | 485 | 4300*1300*1740 | 5.5 | 380 |
12 | 2D5.5W-30/8 | coal gas | 30N | Micro positive pressure | 0.8 | 220 | 585 | 3857*1528*2505 | 6.5 | 380 |
13 | 2D5.5W-40/8 | Coke oven gas | 40 | Atmospheric pressure | 0.8 | 250 | 585 | 3935*2571*2585 | 6.5 | 380 |
14 | 2D5.5W-40/8~111 | Coke oven gas | 40N | 0.002~0.015 | 0.8 | 280 | 585 | 3935*2571*2585 | 6.5 | 380 |
15 | 2D5.5W-80/3.5~12.5 | Rich gas | 80N | 0.35 | 1.25 | 280 | 485 | 4502*1750*1965 | 7 | 380 |
16 | 2D5.5W-72/2.5~8.5 | Regenerated gas | 72N | 0.25 | 0.85 | 250 | 485 | 4040*1750*2380 | 6.5 | 10000 |
17 | 2D5.5W-30/0.1~7 | Hydrogen | 30N | 0.01 | 0.7 | 200 | 485 | 4420*1750*2770 | 6.5 | 10000 |
18 | 2D8W-44/10.2 | Reaction gas | 44 | Micro positive pressure | 1.02 | 315 | 496 | 4828*1924*2750 | 8.7 | 6000 |
19 | 2D8W-65/8~25 | Nitrogen gas | 65N | 0.8 | 2.5 | 250 | 490 | 4900*3645*2270 | 11 | 415 |
20 | 2D8W-119/3.9~15 | Recovery hydrogen gas | 119N | 0.39~0.48 | 1.5 | 450 | 485 | 5800*2250*2970 | 7.6 | 10000 |
21 | 2D8W-187.5/5~10 | Regenerated gas | 187.5N | 0.5 | 1 | 400 | 485 | 4890*1875*2550 | 8.7 | 10000 |
22 | 2D8W-110/7~23 | Nitrogen gas | 110N | 0.7 | 2.3 | 400 | 485 | 4700*2000*2330 | 8.4 | 10000 |
23 | 2D8W-60/6 | coal gas | 60 | 0.001~0.0571 | 0.6 | 400 | 485 | 4894*2245*3393 | 9.5 | 10000 |
24 | 2D12W-125/3 | Gas | 125N | 0.004 | 0.3 | 560 | 490 | 6000*2140*3496 | 11 | 6000 |
25 | 2D12W-160/3~ | mixed gas with hydrogen | 160N | 0.3 | 1.1 | 560 | 428 | 6300*2400*2800 | 8.8 | 10000 |
26 | 2D12W-70/0.4~13 | Rich gas | 70N | 0.04 | 1.3 | 560 | 485 | 5700*2600*3500 | 8.8 | 6000 |
27 | 2D12W-152/3.5~12.5 | Rich gas | 152N | 0.35~0.4 | 1.25 | 560 | 420 | 5700*2600*2800 | 10.2 | 6000 |
28 | 2D12W-256/4~9 | Regenerated gas | 256N | 0.4 | 0.9 | 630 | 420 | 5600*2400*3500 | 13.1 | 10000 |
29 | 2D12W-192/2.5~8.5 | Regenerated gas | 192N | 0.25 | 0.85 | 630 | 420 | 5500*2600*3500 | 13.1 | 10000 |
30 | 2D12W-267/5~11 | Nitrogen and hygrogen gas | 267N | 0.5 | 1.1 | 630 | 420 | 6000*2600*3200 | 13.1 | 10000 |
31 | 2D25W-83/2.5~8.5 | Regenerated gas | 83 | 0.25 | 0.85 | 850 | 372 | 7350*2400*3760 | 21 | 10000 |
32 | 2D25W-230/2.5~8.5 | Regenerated gas | 230N | 0.25 | 0.85 | 800 | 372 | 7350*3400*3760 | 21 | 6000 |
33 | 2D25W-26.5/10~40 | Natural gas | 26.5 | 1 | 4 | 1000 | 372 | 7350*2400*3760 | 13.5 | 10000 |
34 | 2D25W-252/4~12.5 | Rich gas | 252N | 0.4 | 1.25 | 710 | 375 | 7400*2650*3500 | 12.9 | 10000 |
35 | 2D25W-252/4~12.5 | Rich gas | 252N | 0.4 | 1.25 | 730 | 375 | 7400*2650*3500 | 13.5 | 10000 |
36 | 2D25W-110/0.2~6 | Rich gas | 110 | 0.02 | 0.6 | 710 | 372 | 7600*3700*4700 | 13.5 | 10000 |
37 | 2D32W-321.2/2.5~8.5 | Regenerated gas | 321.2N | 0.25 | 0.85 | 1000 | 375 | 7800*2800*3760 | 25 | 10000 |
38 | 2D32W-392.7/4.5~15 | Dry feed gas | 392.7N | 0.45 | 1.5 | 1250 | 375 | 7800*2000*4000 | 26 | 6000 |
39 | 2D32W-150/0.2~6 | Rich gas | 150N | 0.02 | 0.6 | 1000 | 333 | 8400*4530*4000 | 36 | 10000 |
40 | 2D32W-87.5/0.4~15.5 | Rich gas | 87.5N | 0.04 | 1.55 | 710 | 375 | 8100*4500*4700 | 32 | 10000 |
41 | 2D32W-160/0.2~10 | Methane gas | 160N | 0.02 | 1 | 1200 | 333 | 8400*4500*5230 | 36 | 10000 |
42 | 2D32W-174/9~64 | Natural gas | 174N | 0.9 | 6.3 | 900 | 333 | 8200*4000*4730 | 25 | 10000 |
43 | 2D32W-145/5~39 | Feed gas | 145N | 0.5 | 3.9 | 800 | 371 | 8200*4000*4730 | 25 | 10000 |
44 | 2D50W-233/2~19 | Reaction gas | 89 | 0.2 | 1.9 | 1120 | 333 | 8700*3400*4700 | 28 | 10000 |
45 | 2D50W-463/4.8~16 | Feed gas | 463N | 0.48 | 1.6 | 1400 | 333 | 8700*3400*4700 | 29 | 10000 |
46 | 2D50W-461.7/5.8~17 | Tail gas | 461.7N | 0.58 | 1.7 | 1400 | 333 | 8700*3400*4700 | 29 | 10000 |
47 | 2D50W-484/7.5~20 | Hydrogen | 484N | 0.75 | 2 | 1400 | 333 | 8700*3400*4700 | 29 | 10000 |
48 | 2D80W-40.2/150~172 | Hydrogen | 40.2 | 15 | 17.2 | 2700 | 300 | 9500*3800*4500 | 50 | 10000 |
49 | 2D80W-128/2~7 | Regenerated gas | 128 | 0.2 | 0.7 | 1000 | 300 | 9600*4200*5000 | 52 | 10000 |
50 | 2D80W-340/2.2~27.5 | Mixed refrigerant | 340 | 0.22 | 2.75 | 1800 | 333 | 9600*4500*5000 | 55 | 10000 |
Test and inspection
1. Part Material Inspection: Before shipment inspecting the mechanical properties and chemical composition of the following parts and provide inspection reports: cylinder, cylinder head, crankshaft, crankcase, main bearing, connecting rod, piston rod, piston rod, cross head, connecting rod bush connecting bolt, cross head pin, etc.
2. Nondestructive inspection: the supplier shall perform non-destructive inspection of the following parts.
Hydrostatic test and pressure test
The test pressure of cylinder block, cylinder head, piston and other compressed parts is at least 1.5 times of the maximum allowable working pressure, and lasts more than 30 minutes. The test pressure of the above parts of the water chamber is at least 1.5 times the maximum allowable working pressure, not less than 0.6MPa.
Our services:
CHINAMFG Provides Top-Rated, Efficient Reciprocating Compressors And Parts. Energy Efficient. Industry Leading Warranty. Low Maintenance. Gas Solution Engineer and Easy Install, promises to give a definite reply within 6 hours for the after-sales product service, can provide overseas Installation service. We can customize all kinds of standard air compressor, flammable gas compressor, toxin gas compressor of reciprocating compressor & diaphragm compressor.
What is advantages of our company?
Right Compressor Right Solution Gas Engineer Company
Whether centrifugal, screw or reciprocating, CHINAMFG is the sole multi-compressor provider for you.
The Best Quality, The Most Reliability
What is need to consider when purchase a correct compressor Upgrade Your Gas Compressor to Save Money & Energy Consumption Gas compressors are a vital part of many industry applications.
Save money and energy in your industrial workplace by upgrading your gas compressor today!
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Lubrication Style: | Oil-free |
---|---|
Cooling System: | Water Cooling |
Power Source: | AC Power |
Cylinder Position: | Angular |
Structure Type: | Closed Type |
Installation Type: | Stationary Type |
Customization: |
Available
|
|
---|
How Do You Troubleshoot Common Issues with Gas Air Compressors?
Troubleshooting common issues with gas air compressors involves identifying and addressing potential problems that may arise during operation. Here’s a detailed explanation of the troubleshooting process:
1. Start with Safety Precautions:
Prior to troubleshooting, ensure that the gas air compressor is turned off and disconnected from the power source. Follow proper safety procedures, such as wearing appropriate personal protective equipment (PPE), to avoid accidents or injuries.
2. Check Power Supply and Connections:
Verify that the compressor is receiving power and that all electrical connections are secure. Inspect the power cord, plug, and any switches or controls to ensure they are functioning properly. If the compressor is equipped with a battery, check its charge level and connections.
3. Check Fuel Supply:
For gas air compressors that use gasoline or propane, ensure that there is an adequate fuel supply. Check the fuel tank level and verify that the fuel shut-off valve is open. If the compressor has been sitting idle for an extended period, old or stale fuel may cause starting issues. Consider draining and replacing the fuel if necessary.
4. Inspect Air Filters:
Dirty or clogged air filters can restrict airflow and affect the compressor’s performance. Check the intake air filters and clean or replace them as needed. Clogged filters can be cleaned with compressed air or washed with mild detergent and water, depending on the type of filter.
5. Check Oil Level and Quality:
If the gas air compressor has an engine with an oil reservoir, verify the oil level using the dipstick or oil level indicator. Insufficient oil can lead to engine damage or poor performance. Additionally, check the oil quality to ensure it is clean and within the recommended viscosity range. If needed, change the oil following the manufacturer’s guidelines.
6. Inspect Spark Plug:
If the gas air compressor uses a spark plug ignition system, inspect the spark plug for signs of damage or fouling. Clean or replace the spark plug if necessary, following the manufacturer’s recommendations for gap setting and torque.
7. Check Belts and Pulleys:
Inspect the belts and pulleys that drive the compressor pump. Loose or worn belts can cause slippage and affect the compressor’s performance. Tighten or replace any damaged belts, and ensure that the pulleys are properly aligned.
8. Listen for Unusual Noises:
During operation, listen for any unusual or excessive noises, such as grinding, rattling, or squealing sounds. Unusual noises could indicate mechanical issues, loose components, or improper lubrication. If identified, consult the compressor’s manual or contact a qualified technician for further inspection and repair.
9. Consult the Owner’s Manual:
If troubleshooting steps do not resolve the issue, refer to the compressor’s owner’s manual for specific troubleshooting guidance. The manual may provide additional troubleshooting steps, diagnostic charts, or recommended maintenance procedures.
10. Seek Professional Assistance:
If the issue persists or if you are unsure about performing further troubleshooting steps, it is recommended to seek assistance from a qualified technician or contact the manufacturer’s customer support for guidance.
Remember to always prioritize safety and follow proper maintenance practices to prevent issues and ensure the reliable performance of the gas air compressor.
How Do You Transport Gas Air Compressors to Different Job Sites?
Transporting gas air compressors to different job sites requires careful planning and consideration of various factors. Here’s a detailed explanation:
1. Equipment Size and Weight:
The size and weight of the gas air compressor are crucial factors to consider when planning transportation. Gas air compressors come in different sizes and configurations, ranging from portable units to larger, skid-mounted or trailer-mounted compressors. Assess the dimensions and weight of the compressor to determine the appropriate transportation method.
2. Transportation Modes:
Gas air compressors can be transported using different modes of transportation, depending on their size, weight, and distance to the job site:
- Truck or Trailer: Smaller gas air compressors can be loaded onto a truck bed or trailer for transportation. Ensure that the vehicle or trailer has the necessary capacity to accommodate the weight and dimensions of the compressor.
- Flatbed or Lowboy Trailer: Larger gas compressors or skid-mounted units may require transportation on a flatbed or lowboy trailer. These trailers are designed to carry heavy equipment and provide stability during transportation.
- Shipping Container: For long-distance transportation or international shipments, gas air compressors can be transported in shipping containers. The compressor must be properly secured and protected within the container to prevent any damage during transit.
3. Securing and Protection:
It is essential to secure the gas air compressor properly during transportation to prevent shifting or damage. Use appropriate tie-down straps, chains, or fasteners to secure the compressor to the transport vehicle or trailer. Protect the compressor from potential impacts, vibrations, and weather conditions by using suitable covers, padding, or weatherproof enclosures.
4. Permits and Regulations:
Depending on the size and weight of the gas air compressor, special permits or escorts may be required for transportation. Familiarize yourself with local, state, and federal regulations regarding oversize or overweight loads, and obtain the necessary permits to ensure compliance with transportation laws.
5. Route Planning:
Plan the transportation route carefully, considering factors such as road conditions, height and weight restrictions, bridges, tunnels, and any other potential obstacles. Identify alternative routes if needed, and communicate with transportation authorities or agencies to ensure a smooth and safe journey.
6. Equipment Inspection and Maintenance:
Prior to transportation, conduct a thorough inspection of the gas air compressor to ensure it is in proper working condition. Check for any leaks, damage, or loose components. Perform routine maintenance tasks, such as oil changes, filter replacements, and belt inspections, to minimize the risk of equipment failure during transportation.
In summary, transporting gas air compressors to different job sites requires considering factors such as equipment size and weight, choosing appropriate transportation modes, securing and protecting the compressor, obtaining necessary permits, planning the route, and conducting equipment inspection and maintenance. Careful planning and adherence to transportation regulations contribute to the safe and efficient transportation of gas air compressors.
Can Gas Air Compressors Be Used in Remote Locations?
Yes, gas air compressors are well-suited for use in remote locations where access to electricity may be limited or unavailable. Their portability and reliance on gas engines make them an ideal choice for providing a reliable source of compressed air in such environments. Here’s a detailed explanation of how gas air compressors can be used in remote locations:
1. Independence from Electrical Grid:
Gas air compressors do not require a direct connection to the electrical grid, unlike electric air compressors. This independence from the electrical grid allows gas air compressors to be used in remote locations, such as wilderness areas, remote job sites, or off-grid locations, where it may be impractical or cost-prohibitive to establish electrical infrastructure.
2. Mobility and Portability:
Gas air compressors are designed to be portable and easy to transport. They are often equipped with handles, wheels, or trailers, making them suitable for remote locations. The gas engine powering the compressor provides mobility, allowing the compressor to be moved to different areas within the remote location as needed.
3. Fuel Versatility:
Gas air compressors can be fueled by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This fuel versatility ensures that gas air compressors can adapt to the available fuel sources in remote locations. For example, if gasoline or diesel is readily available, the gas air compressor can be fueled with these fuels. Similarly, if natural gas or propane is accessible, the compressor can be configured to run on these gases.
4. On-Site Power Generation:
In remote locations where electricity is limited, gas air compressors can serve as on-site power generators. They can power not only the compressor itself but also other equipment or tools that require electricity for operation. This versatility makes gas air compressors useful for a wide range of applications in remote locations, such as powering lights, tools, communication devices, or small appliances.
5. Off-Grid Operations:
Gas air compressors enable off-grid operations, allowing tasks and activities to be carried out in remote locations without relying on external power sources. This is particularly valuable in industries such as mining, oil and gas exploration, forestry, or construction, where operations may take place in remote and isolated areas. Gas air compressors provide the necessary compressed air for pneumatic tools, drilling equipment, and other machinery required for these operations.
6. Emergency Preparedness:
Gas air compressors are also beneficial for emergency preparedness in remote locations. In situations where natural disasters or emergencies disrupt the power supply, gas air compressors can provide a reliable source of compressed air for essential equipment and systems. They can power emergency lighting, communication devices, medical equipment, or backup generators, ensuring operational continuity in critical situations.
7. Adaptability to Challenging Environments:
Gas air compressors are designed to withstand various environmental conditions, including extreme temperatures, humidity, dust, and vibrations. This adaptability to challenging environments makes them suitable for use in remote locations, where environmental conditions may be harsh or unpredictable.
Overall, gas air compressors can be effectively used in remote locations due to their independence from the electrical grid, mobility, fuel versatility, on-site power generation capabilities, suitability for off-grid operations, emergency preparedness, and adaptability to challenging environments. These compressors provide a reliable source of compressed air, enabling a wide range of applications in remote settings.
editor by CX 2024-05-14
China wholesaler 100nm3/H Medical Oil-Free Low Pressure Oxygen Booster Compressor with Great quality
Product Description
Product Description
100nm3/h Medical oil-free low pressure oxygen booster compressor
Oxygen compressors refer to compressors used to pressurize oxygen for transportation or storage.
There are 2 types of commonly used medical oxygen compressors. One is that PSA oxygen concentrators in hospitals need to be pressurized to supply various wards and operating rooms. It provides 7-10 kg of line pressure. Oxygen from a PSA needs to be stored in a high pressure container for ease of use. The storage pressure is usually a pressure of 100 barg, 150 barg, 200 barg or 300 barg.
This cylinder filled oxygen compressor is suitable for inlet pressure 3-4barg (40-60psig) and discharge pressure 150barg (2150psig)
Small PSA oxygen generating system with a displacement of 4-12NM3/hour, providing clean oxygen filling services for communities and small island hospitals. It can run continuously for 24 hours. It is recommended to fill up to 10 bottles at a time.
Features of this booster compressor
Four stages of compression, each stage is equipped with a safety valve, the inlet is equipped with low intake pressure protection, the exhaust end is equipped with high exhaust pressure protection, and each stage has a temperature sensor. If over temperature and over pressure, the system will alarm and stop, ensuring safe operation, small size, light weight, bottom forklift parking position, easy to move.
Our standard high-pressure oxygen compressors have passed the EU CE certification and meet the requirements of the EU market. We can also provide customized oxygen compressors according to customer conditions.
Our oxygen booster gas compressors feature the following:
1. No oil, no oil required, stainless steel cylinder
2. No pollution, keep the gas purity unchanged
3. The quality is safe and reliable, and the stability is good.
4. Low maintenance cost and simple operation.
5. The service life of the piston ring under low pressure conditions is 4000 hours, and the service life of piston rings under high pressure conditions is 1500-2000 hours
6. According to the customer’s specific working conditions, the compressor is designed as single-stage compression, two-stage compression, three-stage compression and four-stage compression.
7. Low speed, long life, average speed 260-400RPM,
8. Low noise, the average noise is lower than 75dB, it can work quietly in the medical field
9. Continuous continuous heavy-duty operation, which can run stably for 24 hours without stopping (depending on the specific model)
Piston oxygen compressor
A safety oxygen compressor for pressurizing oxygen and delivering or storing it.
One of these industries is used for rough oxygen cutting, where 93% pure oxygen is pumped into oxygen cylinders and acetylene gas is used to cut scrap metal.
Cylinder filling oxygen compressors serve 2 purposes. One is that the hospital’s PSA oxygen generator needs to be pressurized to supply various wards and operating rooms, providing a line pressure of 7-10 kg, and the other is the need to store PSA oxygen. High-pressure containers are convenient for mobile use, and the storage pressure is usually 100barg, 150barg, 200barg or higher 300barg pressure.
This cylinder filled oxygen compressor is suitable for inlet pressure 3-4barg (40-60psig) and discharge pressure 150barg (2150psig)
Small PSA oxygen generating system with a displacement of 4-12NM3/hour, providing clean oxygen filling services for communities and small island hospitals. It can run continuously for 24 hours. It is recommended to fill up to 10 bottles at a time.
Technical parameter
Flow rate | Inlet pressure | Outlet pressure | Motor power | Crankcase | Inlet size | Outlet size | Dimension | Weight | Inlet/Outlet temperature |
mm | kg | ºC | |||||||
1-3 m3/h | 3-4 bar | 150 bar | 1.5-3 kw | Aluminum alloy | M14*1.5 | M14*1.5 | 850*640*680 | 140 | 45 |
200 bar | |||||||||
4-12 m3/h | 3-4 bar | 150 bar | 3-5.5 kw | Small two-row four-level | DN15 | M16*1.5 | 1000*800*1100 | 320 | 45 |
200 bar | |||||||||
13-60 m3/h | 3-4 bar | 150 bar | 11-18.5 kw | Medium two-row four-level | DN25 | M16*1.5 | 1650*950*1470 | 960 | 45 |
200 bar | |||||||||
60-70 m3/h | 3-4 bar | 150 bar | 22 kw | 6H | DN40 | M22*1.5 | 1950*1350*1400 | 1300 | 45 |
80-150 m3/h | 3-4 bar | 150 bar | 30-45 kw | Big two-row four-level | DN50 | M22*1.5 | 2100*1100*1600 | 2000 | 45 |
200 bar | |||||||||
10-15 m3/h | 3-4 bar | 150 bar | 5.5-7.5 kw | New four-row four-level | DN15 | M16*1.5 | 1050*750*1571 | 450 | 45 |
200 bar |
The basi c parameters li sted i n this table can be confi r’med accordi ngtothe actual worki ng condi ti ons.
The parameters of the pressurized 20MPa filling machine are compared with those of the same 15MPa flow model.
The strength and precision of all host parts are increased, and the precision of electrical parts (unloading solenoid valve) and cut- off valve (20MPa high pressure) is greatly improved than that of 15MPa filling machine.
Application industry
Industrial applications for oxygen compressors include booster use of low pressure oxygen for VSA applications in steel mills, paper mills and water treatment plants.
Successful cases
Customer Visit
Packaging & Shipping
• Packing Details: Plywood crate pallet plus foam board and bubble film, Full closed wooden case. 1pcs/each package (for stationary screw air compressor)
• Shipping method: by sea, by LCL/FCL or as requested
• Delivery method: FOB, CFR, CIF and EXW etc.
• Delivery time: in 7-15 days after receiving deposit (customized machines not included)
Company Profile
ZheJiang CHINAMFG Machinery Co., Ltd. is a company dedicated to the production and research and development of various gas compression equipment. The company was established in 2012 and has a total of 5 licensed technical engineers. Mainly engaged in air, nitrogen, CO2 and other special gas compression equipment and after-treat equipment. With the development in recent years, the company has established a foreign trade team in ZheJiang , and hired foreign trade consultants with 10 years of industry experience to better serve customers worldwide. With excellent quality and the support of 30 distributors worldwide, our annual sales in 2018 exceeded 5 million US dollars. We look CHINAMFG to working with you to create a better tomorrow!
After Sales Service
1. 24/7 after sales service support in different languages.
2. Customized color, Model ect.
3. Guidance of installation and commissioning on site can be provided by factory-trained technicians or local Authorized Service Center.
4. Delivery on time and excellent after-sales service.
5. Plenty of original spare parts with proven quality.
6. All kinds of technical documents in different languages.
Payment and delivery
FAQ
Q1. Are you trading company or manufacture ?
A: We are professional manufacture of screw air compressor of HangZhou,ZheJiang ,China. More than 18 years of experience in air compressor manufacturing.
Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.
Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.
Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3.CHINAMFG agents and after service avaiable.arrange our engineers to help you training and installation.
Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.
Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.
Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.
Q8. How do you control quality ?
A: 1. The raw materials are strictly inspected
2. Some key parts are imported from overseas
3. Each compressor must pass at least 5 hours of continuous testing before leaving the factory.
Q9. Do you offer OEM service ?
A: Yes.Both OEM & ODM service can be accepted.
Q10.How long could your air compressor be used?
A: Generally, more than 10 years.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Support |
---|---|
Warranty: | 24 Months |
Lubrication Style: | Oil-free |
Samples: |
US$ 35440/set
1 set(Min.Order) | Order Sample |
---|
Customization: |
Available
|
|
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
What Is the Fuel Efficiency of Gas Air Compressors?
The fuel efficiency of gas air compressors can vary depending on several factors, including the compressor’s design, engine size, load capacity, and usage patterns. Gas air compressors typically use internal combustion engines powered by gasoline or propane to generate the mechanical energy required for compressing air. Here’s a detailed explanation of the factors that can influence the fuel efficiency of gas air compressors:
1. Engine Design and Size:
The design and size of the engine in a gas air compressor can impact its fuel efficiency. Engines with advanced technologies such as fuel injection and electronic controls tend to offer better fuel efficiency compared to older carbureted engines. Additionally, larger engines may consume more fuel to produce the required power, resulting in lower fuel efficiency compared to smaller engines for the same workload.
2. Load Capacity and Usage Patterns:
The load capacity and usage patterns of the gas air compressor play a significant role in fuel efficiency. Compressors operating at or near their maximum load capacity for extended periods may consume more fuel compared to compressors operating at lower loads. Additionally, compressors used intermittently or for lighter tasks may have better fuel efficiency due to reduced demand on the engine.
3. Maintenance and Tuning:
Proper maintenance and tuning of the gas air compressor’s engine can improve fuel efficiency. Regular maintenance tasks such as oil changes, air filter cleaning/replacement, spark plug inspection, and tuning the engine to the manufacturer’s specifications can help ensure optimal engine performance and fuel efficiency.
4. Operating Conditions:
The operating conditions, including ambient temperature, altitude, and humidity, can affect the fuel efficiency of gas air compressors. Extreme temperatures or high altitudes may require the engine to work harder, resulting in increased fuel consumption. Additionally, operating in humid conditions can affect the combustion process and potentially impact fuel efficiency.
5. Fuel Type:
The type of fuel used in the gas air compressor can influence its fuel efficiency. Gasoline and propane are common fuel choices for gas air compressors. The energy content and combustion characteristics of each fuel can affect the amount of fuel consumed per unit of work done. It is important to consider the specific fuel requirements and recommendations of the compressor manufacturer for optimal fuel efficiency.
6. Operator Skills and Practices:
The skills and practices of the operator can also impact fuel efficiency. Proper operation techniques, such as avoiding excessive idling, maintaining consistent engine speeds, and minimizing unnecessary load cycles, can contribute to improved fuel efficiency.
It is important to note that specific fuel efficiency ratings for gas air compressors can vary widely depending on the aforementioned factors. Manufacturers may provide estimated fuel consumption rates or fuel efficiency data for their specific compressor models, which can serve as a reference point when comparing different models or making purchasing decisions.
Ultimately, to maximize fuel efficiency, it is recommended to select a gas air compressor that suits the intended application, perform regular maintenance, follow the manufacturer’s guidelines, and operate the compressor efficiently based on the workload and conditions.
What Are the Key Components of a Gas Air Compressor Control Panel?
A gas air compressor control panel typically consists of several key components. Here’s a detailed explanation:
1. Power Switch:
The power switch allows the operator to turn the compressor on or off. It is usually a toggle switch or a push-button switch located on the control panel.
2. Pressure Gauges:
Pressure gauges display the compressed air pressure at different stages of the compression process. Commonly, there are two pressure gauges: one to measure the incoming air pressure (suction pressure) and another to measure the outgoing compressed air pressure (discharge pressure).
3. Control Knobs or Buttons:
Control knobs or buttons are used to adjust and set various parameters of the compressor operation. These controls may include pressure settings, on/off timers, automatic start/stop functions, and other operational parameters specific to the compressor model.
4. Emergency Stop Button:
An emergency stop button is a critical safety feature that immediately shuts down the compressor in case of an emergency. Pressing the emergency stop button cuts off power to the compressor and stops its operation.
5. Motor Start/Stop Buttons:
Motor start and stop buttons allow the operator to manually start or stop the compressor motor. These buttons are used when manual control of the motor is required, such as during maintenance or troubleshooting.
6. Control Indicators:
Control indicators include various lights or LEDs that provide visual feedback about the compressor’s status and operation. These indicators may include power indicators, motor running indicators, pressure indicators, and fault indicators to signal any malfunctions or abnormal conditions.
7. Control Panel Display:
Some gas air compressors feature a control panel display that provides real-time information and feedback on the compressor’s performance. The display may show parameters such as operating pressure, temperature, maintenance alerts, fault codes, and other relevant information.
8. Start/Stop Control Circuit:
The start/stop control circuit is responsible for initiating and controlling the motor start and stop sequences. It typically includes relays, contactors, and other electrical components that enable the control panel to safely start and stop the compressor motor.
9. Safety and Protection Devices:
Gas air compressor control panels may incorporate safety and protection devices to safeguard the compressor and prevent potential damage or hazardous situations. These devices can include overload relays, thermal protection, pressure relief valves, and other safety features.
10. Control Panel Enclosure:
The control panel enclosure houses and protects the electrical components and wiring of the control panel. It provides insulation, protection from dust and moisture, and ensures the safety of the operator.
In summary, a gas air compressor control panel typically includes a power switch, pressure gauges, control knobs or buttons, emergency stop button, motor start/stop buttons, control indicators, control panel display (if applicable), start/stop control circuit, safety and protection devices, and a control panel enclosure. These components work together to monitor and control the compressor’s operation, ensure safety, and provide essential information to the operator.
What Fuels Are Commonly Used in Gas Air Compressors?
Gas air compressors can be powered by various fuels depending on the specific model and design. The choice of fuel depends on factors such as availability, cost, convenience, and environmental considerations. Here’s a detailed explanation of the fuels commonly used in gas air compressors:
1. Gasoline:
Gasoline is a widely used fuel in gas air compressors, particularly in portable models. Gasoline-powered compressors are popular due to the widespread availability of gasoline and the convenience of refueling. Gasoline engines are generally easy to start, and gasoline is relatively affordable in many regions. However, gasoline-powered compressors may emit more exhaust emissions compared to some other fuel options.
2. Diesel:
Diesel fuel is another common choice for gas air compressors, especially in larger industrial models. Diesel engines are known for their efficiency and durability, making them suitable for heavy-duty applications. Diesel fuel is often more cost-effective than gasoline, and diesel-powered compressors typically offer better fuel efficiency and longer runtime. Diesel compressors are commonly used in construction sites, mining operations, and other industrial settings.
3. Natural Gas:
Natural gas is a clean-burning fuel option for gas air compressors. It is a popular choice in areas where natural gas infrastructure is readily available. Natural gas compressors are often used in natural gas processing plants, pipeline operations, and other applications where natural gas is abundant. Natural gas-powered compressors offer lower emissions compared to gasoline or diesel, making them environmentally friendly.
4. Propane:
Propane, also known as liquefied petroleum gas (LPG), is commonly used as a fuel in gas air compressors. Propane-powered compressors are popular in construction, agriculture, and other industries where propane is used for various applications. Propane is stored in portable tanks, making it convenient for use in portable compressors. Propane-powered compressors are known for their clean combustion, low emissions, and easy availability.
5. Biogas:
In specific applications, gas air compressors can be fueled by biogas, which is produced from the decomposition of organic matter such as agricultural waste, food waste, or wastewater. Biogas compressors are used in biogas production facilities, landfills, and other settings where biogas is generated and utilized as a renewable energy source. The use of biogas as a fuel in compressors contributes to sustainability and reduces dependence on fossil fuels.
It’s important to note that the availability and suitability of these fuel options may vary depending on the region, infrastructure, and specific application requirements. When selecting a gas air compressor, it’s crucial to consider the compatibility of the compressor with the available fuel sources and to follow the manufacturer’s guidelines regarding fuel selection, storage, and safety precautions.
editor by CX 2024-05-08
China Hot selling Oil Free Reciprocating Low Pressure Oxygen Compressor air compressor lowes
Product Description
Oil Free Oxygen Compressor Low Cost for Operation
Introduction
Cape-Golden Oil Free Oxygen Compressor is no liquid lubricant in the body and no liquid lubricant in the crankcase supporting the crankshaft. Piston ring and guide ring is made of high quality modified PTFE with self-lubricating performance. The main parts of stainless steel and copper, aluminum and other material is not easy to produce sparks, all bearings with seals prevent loss of grease, the high pressure Oil Free Oxygen Compressor lubrication system, the movement of the friction pair of grease are the antioxidant of Oil Free Oxygen Compressor special grease.
Product Specification
Model |
Capacity/ Flow Rate |
Inlet Pressure | Discharge Pressure | Power | Weight | Dimension(L*W*H) |
WWZ-3/4-150 | 3m³/h | 3-4bar | 150bar | 4kw | 140kg | 1080X820X850mm |
WWZ-5/4-150 | 5m³/h | 3-4bar | 150bar | 5.5kw | 210kg | 1080X820X850mm |
WWZ-10/4-150 | 10m³/h | 3-4bar | 150bar | 7.5kw | 350kg | 1080X900X850mm |
WWZ-15/4-150 | 15m³/h | 3-4bar | 150bar | 11kw | 350kg | 1250X1571X850mm |
WWZ-20/4-150 | 20m³/h | 3-4bar | 150bar | 15kw | 470kg | 1250X1571X850mm |
WWZ-30/4-150 | 30m³/h | 3-4bar | 150bar | 15kw | 500kg | 1350X1571X900mm |
WWZ-40/4-150 | 40m³/h | 3-4bar | 150bar | 15kw | 500kg | 1600X1100X1100mm |
WWZ-50/4-150 | 50m³/h | 3-4bar | 150bar | 15kw | 500kg | 1600X1100X1100mm |
Oxygen Compressor Control Mode
Oil Free Oxygen Compressor adopts inlet, exhaust pressure switch + inlet and exhaust solenoid valve automatic control.
The Oil Free Oxygen Compressor‘s electrical control loop is connected with the inlet and exhaust pressure switch, in which the inlet pressure switch is normally open, used for the protection of shutdown when the inlet pressure is too low.
The exhaust pressure switch is normally closed, which is used for stopping protection when the exhaust pressure is too high. The specific control principle is: when the air source pressure reaches the upper limit of the intake pressure switch set value, the pressure switch is closed, press the start button at this time, the motor runs, the intake electromagnetic power is opened, the exhaust solenoid valve is disconnected, and the fan starts running and the compressor works normally.
When the exhaust pressure rises to the upper limit of the exhaust pressure switch set value, the exhaust pressure switch acts and the machine stops running. At the same time, the inlet solenoid valve is disconnected and closed.
When the exhaust pressure drops to the lower limit set by the exhaust pressure switch, the exhaust pressure switch is closed, and the machine continues to operate. The oxygen bottling machine needs to be manually reset and run. When the air source pressure falls to the lower limit of the intake pressure switch set value, the intake pressure switch is disconnected, and the machine stops running in standby state.
When the air source pressure is restored to the upper limit of the inlet pressure switch set value, the inlet pressure switch is closed and the machine continues to run.
Temperature protection, each stage of the compressor is equipped with temperature sensor, when the exhaust temperature of a stage is too high, the alarm will stop.
Operation & Maintenance
Keep the Oil Free Oxygen Compressor clean, observe diligently, deal with abnormal situation in time, do not let the compressor work with failure. Compressor disassembly maintenance or replacement parts must be carried out by experienced maintenance personnel or the production plant to avoid unnecessary losses.
It is necessary to check whether the voltage and current deviation is too large to prevent over-voltage or under-voltage operation and damage to the motor.
During the normal operation of the compressor, it is easy not to disconnect the power supply. In case of power failure or power failure for other reasons, the power supply must be cut off to stop the work.
If any abnormal sound is found during the operation of the compressor, it should be stopped immediately for inspection.
Show
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Usage: | Hydrogen, Nitrogen, Oxygen, Ozone |
---|---|
Purpose: | Gas Filling |
Parts: | Valve |
Application Fields: | Medical |
Noise Level: | Low |
Machine Size: | Medium |
Samples: |
US$ 7720/Set
1 Set(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How Do Gas Air Compressors Compare to Diesel Air Compressors?
When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:
1. Fuel Efficiency:
Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.
2. Power Output:
Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.
3. Cost:
In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.
4. Maintenance Requirements:
Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.
5. Environmental Impact:
When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.
6. Portability and Mobility:
Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.
It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.
In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.
Can Gas Air Compressors Be Used for Natural Gas Compression?
Gas air compressors are not typically used for natural gas compression. Here’s a detailed explanation:
1. Different Compressed Gases:
Gas air compressors are specifically designed to compress atmospheric air. They are not typically designed or suitable for compressing natural gas. Natural gas, which is primarily composed of methane, requires specialized compressors designed to handle the unique properties and characteristics of the gas.
2. Safety Considerations:
Natural gas compression involves handling a flammable and potentially hazardous substance. Compressing natural gas requires specialized equipment that meets stringent safety standards to prevent leaks, minimize the risk of ignition or explosion, and ensure the safe handling of the gas. Gas air compressors may not have the necessary safety features or materials to handle natural gas safely.
3. Equipment Compatibility:
Natural gas compression systems typically include components such as gas compressors, gas coolers, separators, and control systems that are specifically designed and engineered for the compression and handling of natural gas. These components are built to withstand the specific demands and conditions associated with natural gas compression, including the high pressures and potential presence of impurities.
4. Efficiency and Performance:
Compressing natural gas requires specialized compressors that can handle the high-pressure ratios and volumetric flow rates associated with the gas. Gas air compressors are generally not designed to achieve the same compression ratios and performance levels required for natural gas compression. Using gas air compressors for natural gas compression would likely result in inefficient operation and suboptimal performance.
5. Regulatory Compliance:
Compressing natural gas is subject to various regulations and standards to ensure safety, environmental protection, and compliance with industry guidelines. These regulations often dictate specific requirements for equipment, materials, and operating procedures in natural gas compression systems. Gas air compressors may not meet these regulatory requirements for natural gas compression.
6. Industry Standards and Practices:
The natural gas industry has well-established standards and best practices for equipment selection, installation, and operation in gas compression systems. These standards are based on the specific requirements and characteristics of natural gas. Gas air compressors do not align with these industry standards and practices, which are essential for safe and efficient natural gas compression.
In summary, gas air compressors are not suitable for natural gas compression. Natural gas compression requires specialized equipment designed to handle the unique properties and safety considerations associated with the gas. Compressors specifically engineered for natural gas compression offer the necessary performance, safety features, and regulatory compliance required for efficient and reliable operation in natural gas compression systems.
Can Gas Air Compressors Be Used in Remote Locations?
Yes, gas air compressors are well-suited for use in remote locations where access to electricity may be limited or unavailable. Their portability and reliance on gas engines make them an ideal choice for providing a reliable source of compressed air in such environments. Here’s a detailed explanation of how gas air compressors can be used in remote locations:
1. Independence from Electrical Grid:
Gas air compressors do not require a direct connection to the electrical grid, unlike electric air compressors. This independence from the electrical grid allows gas air compressors to be used in remote locations, such as wilderness areas, remote job sites, or off-grid locations, where it may be impractical or cost-prohibitive to establish electrical infrastructure.
2. Mobility and Portability:
Gas air compressors are designed to be portable and easy to transport. They are often equipped with handles, wheels, or trailers, making them suitable for remote locations. The gas engine powering the compressor provides mobility, allowing the compressor to be moved to different areas within the remote location as needed.
3. Fuel Versatility:
Gas air compressors can be fueled by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This fuel versatility ensures that gas air compressors can adapt to the available fuel sources in remote locations. For example, if gasoline or diesel is readily available, the gas air compressor can be fueled with these fuels. Similarly, if natural gas or propane is accessible, the compressor can be configured to run on these gases.
4. On-Site Power Generation:
In remote locations where electricity is limited, gas air compressors can serve as on-site power generators. They can power not only the compressor itself but also other equipment or tools that require electricity for operation. This versatility makes gas air compressors useful for a wide range of applications in remote locations, such as powering lights, tools, communication devices, or small appliances.
5. Off-Grid Operations:
Gas air compressors enable off-grid operations, allowing tasks and activities to be carried out in remote locations without relying on external power sources. This is particularly valuable in industries such as mining, oil and gas exploration, forestry, or construction, where operations may take place in remote and isolated areas. Gas air compressors provide the necessary compressed air for pneumatic tools, drilling equipment, and other machinery required for these operations.
6. Emergency Preparedness:
Gas air compressors are also beneficial for emergency preparedness in remote locations. In situations where natural disasters or emergencies disrupt the power supply, gas air compressors can provide a reliable source of compressed air for essential equipment and systems. They can power emergency lighting, communication devices, medical equipment, or backup generators, ensuring operational continuity in critical situations.
7. Adaptability to Challenging Environments:
Gas air compressors are designed to withstand various environmental conditions, including extreme temperatures, humidity, dust, and vibrations. This adaptability to challenging environments makes them suitable for use in remote locations, where environmental conditions may be harsh or unpredictable.
Overall, gas air compressors can be effectively used in remote locations due to their independence from the electrical grid, mobility, fuel versatility, on-site power generation capabilities, suitability for off-grid operations, emergency preparedness, and adaptability to challenging environments. These compressors provide a reliable source of compressed air, enabling a wide range of applications in remote settings.
editor by CX 2024-04-10
China Best Sales Best Selling Low Energy Consumption High Pressure Compressor arb air compressor
Product Description
Product Name | Oil-Free Booster Compressor |
Model No | BW-3/5/10/15/20/30… |
Inlet Pressure | 0.4Mpa( G ) |
Exhaust Pressure | 150/200Mpa( G ) |
Type | High Pressure Oil Free |
Accessories | Filling Manifold, Piston ring, Etc |
Oilless High Pressure O2 Compressor Specification | |||||
NO | Volume | Inlet pressure | Outlet pressure | Type | Cooling type |
1 | 1-3m³ | 0.3-0.4MPa | 15MPa | 2 lines 4 stages vertical type | Wind |
2 | 4-12m³ | 0.3-0.4MPa | 15MPa | 2 lines 4 stages vertical type | Wind |
3 | 13-40m³ | 0.3-0.4MPa | 15MPa | 3 lines 3 stages W type | Water |
4 | 13-60m³ | 0.2-0.4MPa | 15MPa | 2 lines 4 stages vertical type | Water |
5 | 40-80m³ | 0.2-0.4MPa | 15MPa | 4 lines 4 stages S type | Water |
6 | 80-120m³ | 0.2-0.4MPa | 15MPa | 4 lines 4 stages S type | Water |
If you have compressor inquiry please tell us follows information when you send inquiry:
*Compressor working medium: If single gas ,how many purity ? if mixed gas , what’s gas content lit ?
*Suction pressure(gauge pressure):_____bar
*Exhaust pressure(gauge pressure):_____bar
*Flow rate per hour for compressor: _____Nm³/h
Compressor gas suction temperature:_____ºC
Compressor working hours per day :_____hours
Compressor working site altitude :_____m
Environment temperature : _____ºC
Has cooling water in the site or not ?______
Voltage and frequency for 3 phase :____________
Do not has water vapor or H2S in the gas ?______
Application for compressor?__________
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 1 Year |
---|---|
Warranty: | 1 Year |
Product Name: | Oxygen,Nitrogen Compressor |
Gas Type: | Oxygen,Nitrogen,Special Gas |
Cooling Method: | Air Cooling Water Cooling |
Application: | Filling Cylinder |
Customization: |
Available
|
|
---|
Can Gas Air Compressors Be Used for High-Pressure Applications?
Gas air compressors can be used for high-pressure applications, but there are certain considerations to keep in mind. Here’s a detailed explanation:
Gas air compressors are available in various sizes and configurations, and their suitability for high-pressure applications depends on factors such as the compressor’s design, power output, and the specific requirements of the application. Here are some key points to consider:
1. Compressor Design:
Not all gas air compressors are designed to handle high-pressure applications. Some compressors are specifically built for low-to-medium pressure ranges, while others are designed to deliver higher pressure outputs. It is important to select a gas air compressor model that is rated for the desired pressure range. The compressor’s specifications and manufacturer’s guidelines will provide information on the maximum pressure it can generate.
2. Power Output:
The power output of a gas air compressor is a crucial factor in determining its suitability for high-pressure applications. High-pressure compressors require more power to achieve and sustain the desired pressure levels. It is important to ensure that the gas air compressor has sufficient power output to meet the demands of the specific high-pressure application.
3. Cylinder Configuration:
The cylinder configuration of the gas air compressor can also affect its ability to handle high-pressure applications. Compressors with multiple cylinders or stages are designed to generate higher pressures compared to compressors with a single cylinder. Multi-stage compressors compress the air in multiple steps, allowing for higher pressure ratios.
4. Safety Considerations:
High-pressure applications require careful attention to safety considerations. Gas air compressors used for high-pressure applications should be equipped with appropriate safety features such as pressure relief valves, pressure gauges, and safety shut-off systems. It is crucial to follow all safety guidelines and regulations to ensure safe operation.
5. Maintenance and Inspection:
Regular maintenance and inspection are essential for gas air compressors used in high-pressure applications. High-pressure operation can put additional stress on the compressor components, and proper maintenance helps ensure optimal performance and safety. Regular inspections and adherence to maintenance schedules will help identify and address any potential issues before they become major problems.
6. Application-specific Considerations:
Each high-pressure application may have specific requirements and considerations. It is important to evaluate factors such as the required pressure level, duty cycle, flow rate, and any specific environmental conditions that may impact the performance of the gas air compressor. Consulting with the compressor manufacturer or a qualified professional can help determine the suitability of a gas air compressor for a particular high-pressure application.
In summary, gas air compressors can be used for high-pressure applications, provided that they are designed, rated, and configured appropriately. It is essential to consider factors such as compressor design, power output, safety features, maintenance requirements, and application-specific considerations to ensure safe and reliable operation at high pressures.
Can Gas Air Compressors Be Used for Pneumatic Tools?
Yes, gas air compressors can be used for pneumatic tools. Here’s a detailed explanation:
1. Versatile Power Source:
Gas air compressors, powered by gasoline or diesel engines, provide a portable and versatile power source for operating pneumatic tools. They eliminate the need for electrical power supply, making them suitable for remote locations or construction sites where electricity may not be readily available.
2. High Power Output:
Gas air compressors typically offer higher power output compared to electric compressors of similar size. This high power output enables gas compressors to deliver the necessary air pressure and volume required by pneumatic tools, ensuring optimal tool performance.
3. Mobility and Portability:
Gas air compressors are often designed with mobility and portability in mind. They are compact and equipped with wheels or handles, allowing for easy transportation to different job sites. This mobility is advantageous when using pneumatic tools in various locations or when working in confined spaces.
4. Continuous Operation:
Gas air compressors can provide continuous air supply for pneumatic tools without the need for frequent pauses or recharging. As long as there is an adequate fuel supply, gas compressors can operate for extended periods, allowing uninterrupted use of pneumatic tools for tasks such as drilling, nailing, sanding, or painting.
5. Suitable for High-Demand Applications:
Pneumatic tools used in heavy-duty applications often require a robust air supply to meet their performance requirements. Gas air compressors can generate higher air flow rates and maintain higher operating pressures, making them suitable for high-demand pneumatic tools like jackhammers, impact wrenches, or sandblasters.
6. Flexibility in Compressor Size:
Gas air compressors are available in various sizes and capacities, allowing users to choose the compressor that best matches the air demands of their pneumatic tools. From small portable compressors for light-duty tasks to larger industrial-grade compressors for heavy-duty applications, there is a wide range of options to suit different tool requirements.
7. Reduced Dependency on Electrical Infrastructure:
Using gas air compressors for pneumatic tools reduces reliance on electrical infrastructure. In situations where the electrical power supply is limited, unreliable, or expensive, gas compressors offer a viable alternative, ensuring consistent tool performance without concerns about power availability.
It’s important to note that gas air compressors emit exhaust gases during operation, so proper ventilation is necessary when using them in enclosed spaces to ensure the safety of workers.
In summary, gas air compressors can effectively power pneumatic tools, offering mobility, high power output, continuous operation, and suitability for various applications. They provide a reliable and portable solution for utilizing pneumatic tools in locations where electrical power supply may be limited or unavailable.
How Do You Choose the Right Size Gas Air Compressor for Your Needs?
Choosing the right size gas air compressor is crucial to ensure optimal performance and efficiency for your specific needs. Selecting a compressor that is too small may result in insufficient airflow or pressure, while choosing one that is too large can lead to unnecessary energy consumption and higher costs. Here’s a detailed explanation of the factors to consider when choosing the right size gas air compressor:
1. Required Airflow:
Determine the airflow requirements of your applications. Consider the tools, equipment, or processes that will be powered by the compressor and their respective airflow demands. The required airflow is typically measured in cubic feet per minute (CFM). Determine the total CFM required, taking into account any simultaneous or intermittent tool usage.
2. Operating Pressure:
Identify the operating pressure required for your applications. Different tools and systems have specific pressure requirements, measured in pounds per square inch (PSI). Ensure that the compressor you choose can deliver the required pressure consistently.
3. Duty Cycle:
Consider the duty cycle, which refers to the amount of time the compressor will be in operation within a given period. Some applications may require continuous operation, while others involve intermittent or occasional use. Take into account the duty cycle to ensure that the compressor can handle the expected workload without overheating or experiencing excessive wear.
4. Tank Size:
The tank size of a gas air compressor determines its ability to store compressed air and provide a steady supply. A larger tank can help accommodate fluctuations in demand and reduce the frequency of the compressor cycling on and off. Consider the required storage capacity based on the specific applications and the desired balance between continuous operation and storage capacity.
5. Power Source:
Gas air compressors can be powered by different fuels, such as gasoline, diesel, natural gas, or propane. Consider the availability and cost of the fuel options in your location, as well as the specific requirements of your applications. Choose a compressor that is compatible with a power source that suits your needs.
6. Portability:
Determine if portability is a requirement for your applications. If you need to move the compressor to different job sites or locations, consider a portable model with features like wheels, handles, or a compact design that facilitates easy transportation.
7. Noise Level:
If noise is a concern in your working environment, consider the noise level of the compressor. Gas air compressors can vary in their noise output, and certain models may have noise-reducing features or insulation to minimize sound emissions.
8. Manufacturer Recommendations:
Consult the manufacturer’s recommendations and guidelines for selecting the appropriate compressor size for your specific needs. Manufacturers often provide guidelines based on the anticipated applications, airflow requirements, and other factors to help you make an informed decision.
By considering these factors and carefully assessing your specific requirements, you can choose the right size gas air compressor that meets your airflow, pressure, duty cycle, and other operational needs. It’s advisable to consult with industry professionals or compressor experts for guidance, especially for complex or specialized applications.
editor by CX 2024-02-25
China Professional Low Pressure Landfill Gas Compressor Methane Compressor Biogas Compressor air compressor for car
Product Description
Low Pressure Landfill Gas Compressor Methane Compressor Biogas Compressor
ADEKOM Screw Marsh Gas Compressors, uses Italy’s most advanced, mature screw air compressor’s main motor and proven by European markets mature application experience, providing the optimal solution while leading the new trend of environmental protection and energy saving.
Rotary Screw Gas Compressors is suitable for applications where low inlet pressure, because of the Landfill Gas Compressor few moving parts, less maintenance workload, high reliability, Landfill Gas Screw Compressor is technology further ascension for the use of Water-Cooled Gas Compressor.
While, we are specialized in providing compressed air products and solution to our customers all over the world. Our JV manufacturing facility is in Southern China and that our financial & logistics headquarter is in Hong Kong. Our procuct range includes Standard screw air compressor(3kW-315kW), Low and Hight pressure rotary screw air compressor, Oil free screw/scroll compressors,VSD inverter controlled screw compressors,Railway application compressors,Underground application compressors,Biogas/Landfill gas compressor, CNG / LPG application compressors,Refrigerated air dryers,Dessicant air dryers and Inline air filters/water separator.
Technical Parameters
Model | K5.5 (G) |
KA7 (G) |
KA11 (G) |
KB15 (G) |
KB18 (G) |
KB22 (G) |
KC30 (G) |
KC37 (G) |
KC45 (G) |
KD 55(G) |
KD75 (G) |
|
Volume capacity | Nm3/h | 45 | 62 | 92 | 125 | 160 | 185 | 255 | 318 | 390 | 470 | 680 |
Air flow temperature | °C | Air-cooled: ambient temperature +8~10°C | ||||||||||
Residual oil content | mg/m3 | <=3 | ||||||||||
Noise level | dB (A) | <=68±3 | ≤69±3 | ≤71±3 | ≤72±3 | ≤75±3 | ||||||
Power supply | V/ph/Hz | 3/380-415/50 | ||||||||||
Motor | ExdIIBT4 | |||||||||||
Starting method | Direct driven | Star-Delta Starting | ||||||||||
Nominal power | kW | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 |
Nominal speed | rpm | 1440 | 1440 | 1460 | 1460 | 1470 | 1470 | 1470 | 1475 | 1475 | 2965 | 2965 |
Protection class/Insulation class | IP55/F | |||||||||||
Fan | ExdIIBT4 | |||||||||||
Nominal power | W | 180 | 180 | 250 | 550 | 1500 | 2200 | |||||
Nominal speed | rmp | 1400 | 1400 | 960 | ||||||||
Blowing rate | m3/h | 1200 | 2750 | 9300 | 15000 | 23000 | ||||||
Intake pressure | mbar(g) | 30-100 | ||||||||||
Intake temperature | °C | 3-40 | ||||||||||
Relative humidity | % max. | 100 | ||||||||||
H2S (hydrogen sulfide) | ppm max | 1500 | ||||||||||
Working pressure | bar(g) | 7 | ||||||||||
Max. working pressure | Bar(g) | 7 | ||||||||||
Mini. working pressure | Bar(g) | 5.5 | ||||||||||
Mini/max ambient temperature | °C | 0/40 | ||||||||||
Connections | ||||||||||||
Suction pipe connections | inch(mm) | 1 1/2″ | 2″ | DN80 | DN100 | |||||||
Discharge pipe connections | inch | 1/2″ | 3/4″ | 1″ | 1 1/2″ | 2″ |
For any other requests please contact Adekom.
Adekom Kompressoren (HangZhou) Limited
Web : dgadekom
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Lubrication Style: | Lubricated |
---|---|
Cooling System: | Air Cooling |
Cylinder Position: | Angular |
Structure Type: | Closed Type |
Installation Type: | Stationary Type |
Type: | Twin-Screw Compressor |
Customization: |
Available
|
|
---|
What Is the Noise Level of Gas Air Compressors?
The noise level of gas air compressors can vary depending on several factors, including the compressor’s design, engine type, operating conditions, and the presence of noise-reducing features. Here’s a detailed explanation:
1. Compressor Design:
The design of the gas air compressor can influence its noise level. Some compressors are engineered with noise reduction in mind, utilizing features such as sound insulation, vibration dampening materials, and mufflers to minimize noise generation. Compressors with enclosed cabinets or acoustic enclosures tend to have lower noise levels compared to open-frame compressors.
2. Engine Type:
The type of engine used in the gas air compressor can impact the noise level. Gas air compressors typically use internal combustion engines powered by gasoline or propane. Gasoline engines tend to produce higher noise levels compared to diesel engines or electric motors. However, advancements in engine technology have led to quieter gasoline engines with improved noise control.
3. Operating Conditions:
The operating conditions of the gas air compressor can affect the noise level. Factors such as the load capacity, speed of operation, and ambient temperature can influence the amount of noise generated. Compressors operating at higher loads or speeds may produce more noise compared to those running at lower levels.
4. Noise-Reducing Features:
Some gas air compressors are equipped with noise-reducing features to minimize sound emissions. These may include built-in silencers, acoustic enclosures, or noise-absorbing materials. Such features help dampen the noise produced by the compressor and reduce its overall noise level.
5. Manufacturer Specifications:
Manufacturers often provide noise level specifications for their gas air compressors. These specifications typically indicate the sound pressure level (SPL) in decibels (dB) at a specific distance from the compressor. It is important to refer to these specifications to get an idea of the expected noise level of a particular compressor model.
6. Distance and Location:
The distance between the gas air compressor and the listener can impact the perceived noise level. As sound waves disperse, the noise level decreases with distance. Locating the compressor in an area that is isolated or distant from occupied spaces can help minimize the impact of noise on the surrounding environment.
It is important to note that gas air compressors, especially those used in industrial or heavy-duty applications, can generate substantial noise levels. Occupational health and safety regulations may require the use of hearing protection for individuals working in close proximity to loud compressors.
Overall, the noise level of gas air compressors can vary, and it is advisable to consult the manufacturer’s specifications and consider noise-reducing features when selecting a compressor. Proper maintenance, such as regular lubrication and inspection of components, can also help minimize noise levels and ensure optimal performance.
Can Gas Air Compressors Be Used in Agriculture?
Yes, gas air compressors can be used in various agricultural applications. Here’s a detailed explanation:
1. Pneumatic Tools and Equipment:
Gas air compressors can power a wide range of pneumatic tools and equipment used in agriculture. These tools include pneumatic drills, impact wrenches, nail guns, staplers, and pneumatic pumps. Gas air compressors provide the necessary compressed air to operate these tools, making various tasks more efficient and convenient on the farm.
2. Irrigation Systems:
Gas air compressors can be used to power irrigation systems in agriculture. They can supply compressed air to operate pneumatic valves, which control the flow of water in irrigation networks. Gas air compressors ensure reliable and efficient operation of irrigation systems, facilitating the distribution of water to crops in a controlled manner.
3. Grain Handling and Storage:
Air compressors play a vital role in grain handling and storage facilities. They are used to power aeration systems that provide airflow to grains stored in silos or bins. Aeration helps control the temperature and moisture levels, preventing spoilage and maintaining grain quality. Gas air compressors provide the airflow necessary for effective aeration in grain storage operations.
4. Cleaning and Maintenance:
In agriculture, gas air compressors are commonly used for cleaning and maintenance tasks. They can power air blowers or air guns to remove dust, debris, or chaff from machinery, equipment, or storage areas. Gas air compressors provide a high-pressure stream of compressed air, facilitating efficient cleaning and maintenance operations.
5. Livestock Operations:
Gas air compressors find applications in livestock operations as well. They can power pneumatic equipment used for animal care, such as pneumatic nail guns for building or repairing livestock enclosures, pneumatic pumps for water distribution, or pneumatic tools for general maintenance tasks.
6. Portable and Versatile:
Gas air compressors are often portable and can be easily transported around the farm, allowing flexibility in agricultural operations. Their versatility makes them suitable for various tasks, from powering tools and equipment in the field to providing compressed air for maintenance or cleaning in different farm locations.
7. Remote Locations:
In agricultural settings where access to electricity may be limited, gas air compressors offer a reliable alternative. They can be powered by gasoline or diesel engines, providing compressed air even in remote areas without electrical infrastructure.
8. Considerations:
When using gas air compressors in agriculture, it is essential to consider factors such as compressor size, capacity, and maintenance requirements. Selecting the right compressor based on the specific needs of the agricultural applications ensures optimal performance and efficiency.
In summary, gas air compressors have various applications in agriculture. They can power pneumatic tools and equipment, operate irrigation systems, facilitate grain handling and storage, assist in cleaning and maintenance tasks, support livestock operations, and offer portability and versatility. Gas air compressors contribute to increased efficiency, convenience, and productivity in agricultural operations.
What Fuels Are Commonly Used in Gas Air Compressors?
Gas air compressors can be powered by various fuels depending on the specific model and design. The choice of fuel depends on factors such as availability, cost, convenience, and environmental considerations. Here’s a detailed explanation of the fuels commonly used in gas air compressors:
1. Gasoline:
Gasoline is a widely used fuel in gas air compressors, particularly in portable models. Gasoline-powered compressors are popular due to the widespread availability of gasoline and the convenience of refueling. Gasoline engines are generally easy to start, and gasoline is relatively affordable in many regions. However, gasoline-powered compressors may emit more exhaust emissions compared to some other fuel options.
2. Diesel:
Diesel fuel is another common choice for gas air compressors, especially in larger industrial models. Diesel engines are known for their efficiency and durability, making them suitable for heavy-duty applications. Diesel fuel is often more cost-effective than gasoline, and diesel-powered compressors typically offer better fuel efficiency and longer runtime. Diesel compressors are commonly used in construction sites, mining operations, and other industrial settings.
3. Natural Gas:
Natural gas is a clean-burning fuel option for gas air compressors. It is a popular choice in areas where natural gas infrastructure is readily available. Natural gas compressors are often used in natural gas processing plants, pipeline operations, and other applications where natural gas is abundant. Natural gas-powered compressors offer lower emissions compared to gasoline or diesel, making them environmentally friendly.
4. Propane:
Propane, also known as liquefied petroleum gas (LPG), is commonly used as a fuel in gas air compressors. Propane-powered compressors are popular in construction, agriculture, and other industries where propane is used for various applications. Propane is stored in portable tanks, making it convenient for use in portable compressors. Propane-powered compressors are known for their clean combustion, low emissions, and easy availability.
5. Biogas:
In specific applications, gas air compressors can be fueled by biogas, which is produced from the decomposition of organic matter such as agricultural waste, food waste, or wastewater. Biogas compressors are used in biogas production facilities, landfills, and other settings where biogas is generated and utilized as a renewable energy source. The use of biogas as a fuel in compressors contributes to sustainability and reduces dependence on fossil fuels.
It’s important to note that the availability and suitability of these fuel options may vary depending on the region, infrastructure, and specific application requirements. When selecting a gas air compressor, it’s crucial to consider the compatibility of the compressor with the available fuel sources and to follow the manufacturer’s guidelines regarding fuel selection, storage, and safety precautions.
editor by CX 2024-02-02
China Best Sales Low Pressure Convenient Oxygen Gas Booster O2 Compressor air compressor repair near me
Product Description
Product Name | Oil-Free Booster Compressor |
Model No | BW-3/5/10/15/20/30… |
Inlet Pressure | 0.4Mpa( G ) |
Exhaust Pressure | 150/200Mpa( G ) |
Type | High Pressure Oil Free |
Accessories | Filling Manifold, Piston ring, Etc |
If you have compressor inquiry please tell us follows information when you send inquiry:
*Compressor working medium: If single gas ,how many purity ? if mixed gas , what’s gas content lit ?
*Suction pressure(gauge pressure):_____bar
*Exhaust pressure(gauge pressure):_____bar
*Flow rate per hour for compressor: _____Nm³/h
Compressor gas suction temperature:_____ºC
Compressor working hours per day :_____hours
Compressor working site altitude :_____m
Environment temperature : _____ºC
Has cooling water in the site or not ?______
Voltage and frequency for 3 phase :____________
Do not has water vapor or H2S in the gas ?______
Application for compressor?__________
After-sales Service: | 1year |
---|---|
Warranty: | 1year |
Product Name: | Oxygen,Nitrogen Compressor |
Gas Type: | Oxygen,Nitrogen,Special Gas |
Cooling Method: | Air Cooling Water Cooling |
Application: | Filling Cylinder |
Customization: |
Available
|
|
---|
How Do Gas Air Compressors Compare to Diesel Air Compressors?
When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:
1. Fuel Efficiency:
Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.
2. Power Output:
Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.
3. Cost:
In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.
4. Maintenance Requirements:
Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.
5. Environmental Impact:
When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.
6. Portability and Mobility:
Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.
It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.
In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.
What Are the Key Components of a Gas Air Compressor Control Panel?
A gas air compressor control panel typically consists of several key components. Here’s a detailed explanation:
1. Power Switch:
The power switch allows the operator to turn the compressor on or off. It is usually a toggle switch or a push-button switch located on the control panel.
2. Pressure Gauges:
Pressure gauges display the compressed air pressure at different stages of the compression process. Commonly, there are two pressure gauges: one to measure the incoming air pressure (suction pressure) and another to measure the outgoing compressed air pressure (discharge pressure).
3. Control Knobs or Buttons:
Control knobs or buttons are used to adjust and set various parameters of the compressor operation. These controls may include pressure settings, on/off timers, automatic start/stop functions, and other operational parameters specific to the compressor model.
4. Emergency Stop Button:
An emergency stop button is a critical safety feature that immediately shuts down the compressor in case of an emergency. Pressing the emergency stop button cuts off power to the compressor and stops its operation.
5. Motor Start/Stop Buttons:
Motor start and stop buttons allow the operator to manually start or stop the compressor motor. These buttons are used when manual control of the motor is required, such as during maintenance or troubleshooting.
6. Control Indicators:
Control indicators include various lights or LEDs that provide visual feedback about the compressor’s status and operation. These indicators may include power indicators, motor running indicators, pressure indicators, and fault indicators to signal any malfunctions or abnormal conditions.
7. Control Panel Display:
Some gas air compressors feature a control panel display that provides real-time information and feedback on the compressor’s performance. The display may show parameters such as operating pressure, temperature, maintenance alerts, fault codes, and other relevant information.
8. Start/Stop Control Circuit:
The start/stop control circuit is responsible for initiating and controlling the motor start and stop sequences. It typically includes relays, contactors, and other electrical components that enable the control panel to safely start and stop the compressor motor.
9. Safety and Protection Devices:
Gas air compressor control panels may incorporate safety and protection devices to safeguard the compressor and prevent potential damage or hazardous situations. These devices can include overload relays, thermal protection, pressure relief valves, and other safety features.
10. Control Panel Enclosure:
The control panel enclosure houses and protects the electrical components and wiring of the control panel. It provides insulation, protection from dust and moisture, and ensures the safety of the operator.
In summary, a gas air compressor control panel typically includes a power switch, pressure gauges, control knobs or buttons, emergency stop button, motor start/stop buttons, control indicators, control panel display (if applicable), start/stop control circuit, safety and protection devices, and a control panel enclosure. These components work together to monitor and control the compressor’s operation, ensure safety, and provide essential information to the operator.
What Are the Primary Applications of Gas Air Compressors?
Gas air compressors have a wide range of applications across various industries and activities. These compressors, powered by gas engines, provide a portable and versatile source of compressed air. Here’s a detailed explanation of the primary applications of gas air compressors:
1. Construction Industry:
Gas air compressors are extensively used in the construction industry. They power a variety of pneumatic tools and equipment, such as jackhammers, nail guns, impact wrenches, and concrete breakers. The portable nature of gas air compressors makes them ideal for construction sites where electricity may not be readily available or practical to use.
2. Agriculture and Farming:
Gas air compressors find applications in the agricultural sector. They are used to operate air-powered machinery and tools, including pneumatic seeders, sprayers, and agricultural pumps. Gas air compressors provide the necessary power to carry out tasks such as crop seeding, irrigation, and pest control in agricultural settings.
3. Recreational Activities:
Gas air compressors are commonly utilized in recreational activities. They are used to inflate tires, sports balls, inflatable structures, and recreational equipment such as air mattresses, rafts, and inflatable toys. Gas air compressors provide a convenient and portable solution for inflating various recreational items in outdoor settings.
4. Mobile Service Operations:
Gas air compressors are employed in mobile service operations, such as mobile mechanics, tire service providers, and mobile equipment repair services. These compressors power air tools and equipment required for on-site repairs, maintenance, and servicing of vehicles, machinery, and equipment. The mobility of gas air compressors allows service providers to bring their tools and compressed air source directly to the location of the service requirement.
5. Remote Job Sites:
Gas air compressors are well-suited for remote job sites or locations without access to electricity. They are commonly used in industries such as mining, oil and gas exploration, and remote construction projects. Gas air compressors power pneumatic tools, machinery, and drilling equipment in these environments, providing a reliable source of compressed air for operational needs.
6. Emergency and Backup Power:
In emergency situations or during power outages, gas air compressors can serve as a backup power source. They can power essential equipment and systems that rely on compressed air, such as emergency lighting, communication devices, medical equipment, and backup generators. Gas air compressors provide a reliable alternative power solution when electrical power is unavailable or unreliable.
7. Sandblasting and Surface Preparation:
Gas air compressors are used in sandblasting and surface preparation applications. They provide the high-pressure air necessary for propelling abrasive media, such as sand or grit, to remove paint, rust, or other coatings from surfaces. Gas air compressors offer the power and portability required for sandblasting operations in various industries, including automotive, metal fabrication, and industrial maintenance.
8. Off-Road and Outdoor Equipment:
Gas air compressors are commonly integrated into off-road and outdoor equipment, such as off-road vehicles, utility trucks, and recreational vehicles. They power air-operated systems, including air suspension systems, air brakes, air lockers, and air horns. Gas air compressors provide the necessary compressed air for reliable and efficient operation of these systems in rugged and outdoor environments.
Overall, gas air compressors have diverse applications in construction, agriculture, recreational activities, mobile service operations, remote job sites, emergency power backup, sandblasting, and various off-road and outdoor equipment. Their portability, versatility, and reliable power supply make them indispensable tools in numerous industries and activities.
editor by CX 2023-11-08
China Professional Low Pressure Convenient Oxygen Gas Booster O2 Compressor air compressor portable
Product Description
Product Name | Oil-Free Booster Compressor |
Model No | BW-3/5/10/15/20/30… |
Inlet Pressure | 0.4Mpa( G ) |
Exhaust Pressure | 150/200Mpa( G ) |
Type | High Pressure Oil Free |
Accessories | Filling Manifold, Piston ring, Etc |
If you have compressor inquiry please tell us follows information when you send inquiry:
*Compressor working medium: If single gas ,how many purity ? if mixed gas , what’s gas content lit ?
*Suction pressure(gauge pressure):_____bar
*Exhaust pressure(gauge pressure):_____bar
*Flow rate per hour for compressor: _____Nm³/h
Compressor gas suction temperature:_____ºC
Compressor working hours per day :_____hours
Compressor working site altitude :_____m
Environment temperature : _____ºC
Has cooling water in the site or not ?______
Voltage and frequency for 3 phase :____________
Do not has water vapor or H2S in the gas ?______
Application for compressor?__________
After-sales Service: | 1year |
---|---|
Warranty: | 1year |
Product Name: | Oxygen,Nitrogen Compressor |
Gas Type: | Oxygen,Nitrogen,Special Gas |
Cooling Method: | Air Cooling Water Cooling |
Application: | Filling Cylinder |
Customization: |
Available
|
|
---|
How Do You Maintain a Gas Air Compressor?
Maintaining a gas air compressor is essential to ensure its optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, extends the compressor’s lifespan, and promotes efficient operation. Here are some key maintenance steps for a gas air compressor:
1. Read the Manual:
Before performing any maintenance tasks, thoroughly read the manufacturer’s manual specific to your gas air compressor model. The manual provides important instructions and guidelines for maintenance procedures, including recommended intervals and specific maintenance requirements.
2. Check and Change the Oil:
Gas air compressors typically require regular oil changes to maintain proper lubrication and prevent excessive wear. Check the oil level regularly and change it according to the manufacturer’s recommendations. Use the recommended grade of oil suitable for your compressor model.
3. Inspect and Replace Air Filters:
Inspect the air filters regularly and clean or replace them as needed. Air filters prevent dust, debris, and contaminants from entering the compressor’s internal components. Clogged or dirty filters can restrict airflow and reduce performance. Follow the manufacturer’s guidelines for filter cleaning or replacement.
4. Drain Moisture from the Tank:
Gas air compressors accumulate moisture in the compressed air, which can lead to corrosion and damage to the tank and internal components. Drain the moisture from the tank regularly to prevent excessive moisture buildup. Refer to the manual for instructions on how to properly drain the moisture.
5. Check and Tighten Connections:
Regularly inspect all connections, fittings, and hoses for any signs of leaks or loose connections. Tighten any loose fittings and repair or replace damaged hoses or connectors. Leaks can lead to reduced performance and inefficiency.
6. Inspect Belts and Pulleys:
If your gas air compressor has belts and pulleys, inspect them for wear, tension, and proper alignment. Replace any worn or damaged belts and ensure proper tension to maintain optimal performance.
7. Clean the Exterior and Cooling Fins:
Keep the exterior of the gas air compressor clean from dirt, dust, and debris. Use a soft cloth or brush to clean the surfaces. Additionally, clean the cooling fins regularly to remove any accumulated debris that can impede airflow and cause overheating.
8. Schedule Professional Servicing:
While regular maintenance can be performed by the user, it is also important to schedule professional servicing at recommended intervals. Professional technicians can perform thorough inspections, conduct more complex maintenance tasks, and identify any potential issues that may require attention.
9. Follow Safety Precautions:
When performing maintenance tasks on a gas air compressor, always follow safety precautions outlined in the manual. This may include wearing protective gear, disconnecting the power source, and ensuring proper ventilation in confined spaces.
By following these maintenance steps and adhering to the manufacturer’s guidelines, you can keep your gas air compressor in optimal condition, prolong its lifespan, and ensure safe and efficient operation.
How Do Gas Air Compressors Contribute to Energy Savings?
Gas air compressors can contribute to energy savings in several ways. Here’s a detailed explanation:
1. Efficient Power Source:
Gas air compressors are often powered by gasoline or diesel engines. Compared to electric compressors, gas-powered compressors can provide higher power output for a given size, resulting in more efficient compression of air. This efficiency can lead to energy savings, especially in applications where a significant amount of compressed air is required.
2. Reduced Electricity Consumption:
Gas air compressors, as standalone units that don’t rely on electrical power, can help reduce electricity consumption. In situations where the availability of electricity is limited or expensive, using gas air compressors can be a cost-effective alternative. By utilizing fuel-based power sources, gas air compressors can operate independently from the electrical grid and reduce dependence on electricity.
3. Demand-Sensitive Operation:
Gas air compressors can be designed to operate on demand, meaning they start and stop automatically based on the air requirements. This feature helps prevent unnecessary energy consumption during periods of low or no compressed air demand. By avoiding continuous operation, gas air compressors can optimize energy usage and contribute to energy savings.
4. Energy Recovery:
Some gas air compressors are equipped with energy recovery systems. These systems capture and utilize the heat generated during the compression process, which would otherwise be wasted. The recovered heat can be redirected and used for various purposes, such as space heating, water heating, or preheating compressed air. This energy recovery capability improves overall energy efficiency and reduces energy waste.
5. Proper Sizing and System Design:
Selecting the appropriate size and capacity of a gas air compressor is crucial for energy savings. Over-sizing a compressor can lead to excessive energy consumption, while under-sizing can result in inefficient operation and increased energy usage. Properly sizing the compressor based on the specific air demands ensures optimal efficiency and energy savings.
6. Regular Maintenance:
Maintaining gas air compressors in good working condition is essential for energy efficiency. Regular maintenance, including cleaning or replacing air filters, checking and repairing leaks, and ensuring proper lubrication, helps optimize compressor performance. Well-maintained compressors operate more efficiently, consume less energy, and contribute to energy savings.
7. System Optimization:
For larger compressed air systems that involve multiple compressors, implementing system optimization strategies can further enhance energy savings. This may include employing advanced control systems, such as variable speed drives or sequencers, to match compressed air supply with demand, minimizing unnecessary energy usage.
In summary, gas air compressors contribute to energy savings through their efficient power sources, reduced electricity consumption, demand-sensitive operation, energy recovery systems, proper sizing and system design, regular maintenance, and system optimization measures. By utilizing gas-powered compressors and implementing energy-efficient practices, businesses and industries can achieve significant energy savings in their compressed air systems.
Are There Different Types of Gas Air Compressors Available?
Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:
1. Reciprocating Gas Air Compressors:
Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.
2. Rotary Screw Gas Air Compressors:
Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.
3. Rotary Vane Gas Air Compressors:
Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.
4. Centrifugal Gas Air Compressors:
Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.
5. Oil-Free Gas Air Compressors:
Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.
6. Portable Gas Air Compressors:
Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.
7. High-Pressure Gas Air Compressors:
High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.
8. Biogas Air Compressors:
Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.
These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.
editor by CX 2023-11-07
China Industrial Low Pressure Industrial Air Compressor (09W series) 12v air compressor
Merchandise Description
Industrial Lower Pressure Industrial Air Compressor (09W collection)
Model No. of the motor |
Product No. | Air discharge (Nm3/min) | Discharge stress (Mpa) |
Ranges of compression | Motor electrical power (KW) | Running speed (RPM) |
09W | 09W-1.thirty/10 | one.30 | 1. | two | eleven | 670 |
09W-1.sixty/8 | one.60 | .eight | two | 11 | 820 | |
09W-1.60/ten | 1.sixty | 1. | two | 15 | 820 | |
09W-2.00/8 | two.00 | .8 | 2 | 15 | 870 | |
09W-2.00/10 | 2.00 | 1. | two | fifteen | 870 | |
two-09W-3.20/10 | 3.twenty | one. | 2 | 15X2 | 820 | |
2-09W-4.00/ten | 4.00 | 1. | 2 | 15X2 | 870 |
Model Number: | 09W |
---|---|
Brand Name: | OEM |
Place of Orgin: | Cn |
Type: | Piston |
Performance: | Low Noise |
Drive Mode: | Electric |
###
Customization: |
Available
|
---|
###
Model No. of the engine |
Model No. | Air discharge (Nm3/min) | Discharge pressure (Mpa) |
Levels of compression | Motor power (KW) | Running speed (RPM) |
09W | 09W-1.30/10 | 1.30 | 1.0 | 2 | 11 | 670 |
09W-1.60/8 | 1.60 | 0.8 | 2 | 11 | 820 | |
09W-1.60/10 | 1.60 | 1.0 | 2 | 15 | 820 | |
09W-2.00/8 | 2.00 | 0.8 | 2 | 15 | 870 | |
09W-2.00/10 | 2.00 | 1.0 | 2 | 15 | 870 | |
2-09W-3.20/10 | 3.20 | 1.0 | 2 | 15X2 | 820 | |
2-09W-4.00/10 | 4.00 | 1.0 | 2 | 15X2 | 870 |
Model Number: | 09W |
---|---|
Brand Name: | OEM |
Place of Orgin: | Cn |
Type: | Piston |
Performance: | Low Noise |
Drive Mode: | Electric |
###
Customization: |
Available
|
---|
###
Model No. of the engine |
Model No. | Air discharge (Nm3/min) | Discharge pressure (Mpa) |
Levels of compression | Motor power (KW) | Running speed (RPM) |
09W | 09W-1.30/10 | 1.30 | 1.0 | 2 | 11 | 670 |
09W-1.60/8 | 1.60 | 0.8 | 2 | 11 | 820 | |
09W-1.60/10 | 1.60 | 1.0 | 2 | 15 | 820 | |
09W-2.00/8 | 2.00 | 0.8 | 2 | 15 | 870 | |
09W-2.00/10 | 2.00 | 1.0 | 2 | 15 | 870 | |
2-09W-3.20/10 | 3.20 | 1.0 | 2 | 15X2 | 820 | |
2-09W-4.00/10 | 4.00 | 1.0 | 2 | 15X2 | 870 |
what to see in an air compressor
If you need to buy an air compressor, you should know what to look for. The types of air compressors on the market are classified according to their CFM rating, safety devices, and pumps. There are several differences between lubricated and oil-free air compressors that you should know before buying. To better understand the difference between these types of air compressors, read on. This article will guide you through these differences.
Pump
If you are looking for a quality air compressor, you have come to the right place. A good air compressor pump will provide high pressure for anything from tires to boats and more. There are hundreds of different models to choose from, and the great thing about buying one from a Chinese manufacturer is that they have so many options. More importantly, Chinese manufacturers can customize air equipment such as air compressors at low prices.
A good quality air pump won’t break easily, but you’ll be able to use it for years. Choosing a high-quality pump will help you avoid many hassles on the road, such as unplanned downtime and installation costs. Plus, a pump from the same manufacturer as your air compressor is your best bet to ensure optimum performance. Listed below are some tips for finding a quality pump for your air compressor.
The air compressor is an important but unremarkable invention. Without them, our lives would be completely different. Without a pump, we can’t get hot water from central heating, nor can we get heat from the refrigerator. We can’t inflate bicycle tires, and we can’t refuel cars. Pumps are vital to all kinds of machines. So why is it important to choose the right product? The answer may surprise you.
Different types of pumps are used for different applications. Positive displacement pumps move a fixed volume of fluid and direct it to a drain. This design ensures constant flow at a constant speed regardless of discharge pressure. Centrifugal pumps work differently. The impeller accelerates the fluid, converting the input energy into kinetic energy. This type of pump is most commonly used in mines, air conditioning, industrial plants, and flood control.
safety equipment
There are several safety features you should check when using an air compressor. First, check the connection of the air filter to the air. If they come loose, parts may separate and cause injury. Another important safety feature is the shut-off valve. When working near compressed air, the shut-off valve should be within easy reach and visibility. Moving parts and other equipment must be protected with protective covers. Check safety valve and replace damaged parts.
Rupture discs are copper discs located on the air cooler. When the air pressure exceeds a certain limit, it bursts. Fusible plugs contain materials that melt at high temperatures. The compressor should have a lubricating oil pressure alarm and cut off the trip signal. If these two safety devices fail, the compressor should be stopped immediately. The rupture disc should be inspected at least weekly to ensure it does not rupture under pressure.
If the pressure level is too high, and overcurrent protection device cuts power to the motor. It also automatically shuts off the compressor when the hose ruptures or the air volume exceeds a preset level. The device should be installed on the air compressor to prevent accidents. Its job is to protect the operator from harm. If employees do not follow these safety measures, they may cause equipment damage.
To ensure safety when operating the air compressor, safety glasses and gloves should be worn. Pressurized air can cause eye injury, and crash goggles can provide a barrier to prevent this. Additionally, the self-retracting cord prevents trip hazards and reinforces excess cord. You should also keep your hands and body away from the air nozzle. This will prevent you from being sprayed with compressed air.
CFM Rating
An air compressor’s PSI and CFM ratings indicate the pressure and volume it can deliver. PSI stands for pounds per square inch and measures the force and pressure contained in one square inch of air. These two indicators are equally important when choosing an air compressor. If you need a lot of compressed air for a specific application, you will need a higher psi compressor. Likewise, if you are using compressed air in a smaller application, a low cfm compressor will not provide enough power to meet your needs.
When comparing different air compressors, be sure to pay close attention to horsepower and CFM ratings. While compressor power is essential for some tasks, it is not the most important aspect. The CFM rating of an air compressor will determine how big a project it can handle and how long it takes to charge. Make sure you understand the CFM and PSI ratings of your future compressors, as not knowing these important statistics can frustrate you and drive up costs.
In general, it is best to choose an air compressor with a CFM rating higher than the size of the air tool. This will ensure that the air compressor has enough pressure to work multiple tools efficiently at the same time. While smaller CFM ratings may be sufficient for smaller projects, larger tools such as drills require a lot of air. Therefore, the higher the CFM, the larger and more powerful the tool.
Once you understand the CFM of an air compressor, you can start looking for the right tool. You can check the CFM rating of your air compressor online by commenting below. If you’re not sure about the size of your air tool, you can always buy a second air compressor. This is a great way to double the CFM of your air compressor! You’ll have more air to do more work, and your compressor will last longer.
Lack of oil and lubrication
Oil-free air compressors have a smaller footprint and require less maintenance than oil-lubricated air compressors. Although oil-lubricated air compressors are more expensive and heavier than oil-free air compressors, they are also ideal for stationary use. The benefits of oil-free air compressors include greater durability and lower maintenance costs. The advantages and disadvantages of each type are discussed below.
Oil-free air compressors are generally quieter than oil-lubricated air compressors. However, you may still experience some noise while using it. To avoid this, you should choose a quiet intake compressor. However, if you work next to a noisy compressor, you should buy a muffler, an aftermarket filter that reduces compressor noise.
If you want to use the air compressor for a long time, the oil-free model is not the right choice. Its Teflon coating wears off over time, especially at extreme temperatures. Additionally, oil-free air compressors have a large number of moving parts that require regular maintenance, while oil-filled air compressors are great for those who don’t want to invest in extra parts.
Another major difference between oil-free and oil-lubricated air compressors is lubrication. Oil-lubricated air compressors require regular lubrication whereas oil-free air compressors are pre-lubricated. They have fewer parts and are cheaper. Oil-free air compressors are lighter than oil-lubricated air compressors. In addition to being more affordable, oil-free air compressors are more powerful and durable.
While oil-filled air compressors are more efficient and durable, they generate a lot of heat. However, they are also more expensive and require regular oil changes. Furthermore, they are difficult to transport. They also need to be permanently installed. These air compressors are also not portable and require a fixed location. So, consider your needs before deciding which type is best for you. When you’re choosing an air compressor for your business, be sure to shop around.
noise level
If you are wondering what the noise level of an air compressor is, the answer depends on your specific equipment and working environment conditions. Typically, air compressors produce 40 to 90 decibels of noise. Although the lower the decibel level, the quieter the compressor will be. Larger, more powerful air compressors produce higher noise levels than their little brothers. But no matter how big the air compressors are, it’s a good idea to wear hearing protection while working around them.
When purchasing a new air compressor, the noise level of the air compressor should be considered. While this may seem like a small problem, there are actually a lot of variations on these noisy machines. The most common type of air compressor is the reciprocating piston pump. This model uses pistons similar to an engine to rotate inside a chamber. The piston moves quickly and traps air proportional to its size. Single-piston air compressors are generally noisier than twin-piston models, also known as twin cylinders.
But even if you have the proper equipment to protect your hearing, it’s still important to know the noise level of an air compressor. Even if the noise is not immediately dangerous, it can still cause temporary or permanent hearing loss. This condition is called noise-induced hearing loss, and an air compressor with a sound level of 80 or higher can cause permanent hearing damage. You can avoid potential damage to your hearing and prevent accidents by simply paying attention to the noise level of your air compressor.
Air compressors are inherently noisy, but if you take steps to reduce their noise levels, you can minimize disruption to neighbors and co-workers. For example, installing a sound enclosure in your work area can prevent your air compressor from making as much noise as before. Depending on your workspace, you can also try installing a long air hose, which will reduce sound levels by up to 25%.
editor by czh 2022-12-22
China Textile Industry Low Pressure 75kw 5bar Two-Stage Pm VSD/VFD Rotary Screw Air Compressor, Energy Saving45%, OEM&Customization Provided air compressor oil
Merchandise Description
Textile Market Minimal Force 75kw 5bar Two-Phase Pm VSD/VFD Rotary Screw Air Compressor, Power Saving45%, OEM&Customization Supplied
Specialized Info:
Product | (kw) Energy |
Air folw/pressure | Outlet dimensions | Sounds | KG Device weight |
mm Device measurement |
WZS-22PMD-2S | 22 | six.25m³/.5MPa | RP1 1/two | 66±3 | 1350 | 1800x1270x1550 |
WZS-30PMD-2S | 30 | seven.2m³/.5MPa | RP1 1/two | 66±3 | 1550 | 1800x1270x1550 |
WZS-37PMD-2S | 37 | 10m³/.5MPa | RP1 1/two | 68±3 | 1900 | 1800x1270x1550 |
WZS-45PMD-2S | forty five | 12m³/.5MPa | RP2 | 68±3 | 2100 | 1800x1270x1550 |
WZS-55PMD-2S | fifty five | thirteen.8m³/.5MPa | RP2 | 70±3 | 2200 | 2100x1360x1660 |
WZS-75PMD-2S | 75 | eighteen.5m³/.5MPa | DN65 | 70±3 | 2800 | 2800x1750x1900 |
WZS-90PMD-2S | 90 | 23m³/.5MPa | DN65 | 72±3 | 2800 | 2800x1750x1900 |
WZS-110PMD-2S | 110 | 28m³/.5MPa | DN80 | 72±3 | 3200 | 3200x1750x2250 |
WZS-132PMD-2S | 132 | 32.5m³/.5MPa | D270N80 | 72±3 | 3500 | 3200x1750x2250 |
WZS-160PMD-2S | a hundred and sixty | 41m³/.5MPa | DN125 | 74±3 | 4100 | 3200x1750x2350 |
WZS-185PMD-2S | 185 | 45m³/.5MPa | DN125 | 74±3 | 4500 | 3800x2150x2250 |
WZS-200PMD-2S | 200 | 50m³/.5MPa | DN150 | 76±3 | 5100 | 3800x2150x2250 |
WZS-220PMD-2S | 220 | 54m³/.5MPa | DN150 | 76±3 | 6200 | 3800x2250x2250 |
WZS-250PMD-2S | 250 | 61m³/.5MPa | DN150 | 78±3 | 6600 | 4200x2250x2400 |
FAQ
1. OEM/ODM, or customer’ s symbol printed is offered?
Yes, OEM/ODM, customer’s logo is welcomed.
two. Delivery day?
Usually 5-25 doing work times following getting deposit, certain shipping and delivery day based mostly on purchase quantity.
three. What is actually your payment conditions?
Regularly undertaking thirty% deposit and 70% stability by T/T, Western Union, Paypal, other payment conditions also can be reviewed primarily based on our cooperation.
4. How to handle your top quality?
We have professional QC team, manage the quality in the course of the mass generation and inspect the goods before shipping and delivery.
five. If we don’ t have shipping and delivery forwarder in China , would you do this for us?
We can offer you you ideal delivery line to make certain you can get the items well timed at ideal value.
six. I in no way occur to China just before , can you be my CZPT in China?
Sure , I’m happy to be your CZPT because our organization straight located in ZheJiang , where is the most well-known metropolis in China, if you want to come China then we are happy to give you one-quit provider, such as booking ticket, selecting up at the airport, reserving lodge, accompany browsing manufacturing unit. It gonna make you an unforgettable memory.
US $10,000-20,000 / Unit | |
1 Unit (Min. Order) |
###
After-sales Service: | Video Technical Support |
---|---|
Warranty: | Unit 1 Year, Air End 2 Years |
Lubrication Style: | Oil-less |
Cooling System: | Air Cooling |
Power Source: | AC Power |
Structure Type: | Closed Type |
###
Customization: |
Available
|
---|
###
Model | (kw) Power |
Air folw/pressure | Outlet size | Noise | KG Unit weight |
mm Unit size |
WZS-22PMD-2S | 22 | 6.25m³/0.5MPa | RP1 1/2 | 66±3 | 1350 | 1800x1270x1550 |
WZS-30PMD-2S | 30 | 7.2m³/0.5MPa | RP1 1/2 | 66±3 | 1550 | 1800x1270x1550 |
WZS-37PMD-2S | 37 | 10m³/0.5MPa | RP1 1/2 | 68±3 | 1900 | 1800x1270x1550 |
WZS-45PMD-2S | 45 | 12m³/0.5MPa | RP2 | 68±3 | 2100 | 1800x1270x1550 |
WZS-55PMD-2S | 55 | 13.8m³/0.5MPa | RP2 | 70±3 | 2200 | 2100x1360x1660 |
WZS-75PMD-2S | 75 | 18.5m³/0.5MPa | DN65 | 70±3 | 2800 | 2800x1750x1900 |
WZS-90PMD-2S | 90 | 23m³/0.5MPa | DN65 | 72±3 | 2800 | 2800x1750x1900 |
WZS-110PMD-2S | 110 | 28m³/0.5MPa | DN80 | 72±3 | 3200 | 3200x1750x2250 |
WZS-132PMD-2S | 132 | 32.5m³/0.5MPa | D270N80 | 72±3 | 3500 | 3200x1750x2250 |
WZS-160PMD-2S | 160 | 41m³/0.5MPa | DN125 | 74±3 | 4100 | 3200x1750x2350 |
WZS-185PMD-2S | 185 | 45m³/0.5MPa | DN125 | 74±3 | 4500 | 3800x2150x2250 |
WZS-200PMD-2S | 200 | 50m³/0.5MPa | DN150 | 76±3 | 5100 | 3800x2150x2250 |
WZS-220PMD-2S | 220 | 54m³/0.5MPa | DN150 | 76±3 | 6200 | 3800x2250x2250 |
WZS-250PMD-2S | 250 | 61m³/0.5MPa | DN150 | 78±3 | 6600 | 4200x2250x2400 |
US $10,000-20,000 / Unit | |
1 Unit (Min. Order) |
###
After-sales Service: | Video Technical Support |
---|---|
Warranty: | Unit 1 Year, Air End 2 Years |
Lubrication Style: | Oil-less |
Cooling System: | Air Cooling |
Power Source: | AC Power |
Structure Type: | Closed Type |
###
Customization: |
Available
|
---|
###
Model | (kw) Power |
Air folw/pressure | Outlet size | Noise | KG Unit weight |
mm Unit size |
WZS-22PMD-2S | 22 | 6.25m³/0.5MPa | RP1 1/2 | 66±3 | 1350 | 1800x1270x1550 |
WZS-30PMD-2S | 30 | 7.2m³/0.5MPa | RP1 1/2 | 66±3 | 1550 | 1800x1270x1550 |
WZS-37PMD-2S | 37 | 10m³/0.5MPa | RP1 1/2 | 68±3 | 1900 | 1800x1270x1550 |
WZS-45PMD-2S | 45 | 12m³/0.5MPa | RP2 | 68±3 | 2100 | 1800x1270x1550 |
WZS-55PMD-2S | 55 | 13.8m³/0.5MPa | RP2 | 70±3 | 2200 | 2100x1360x1660 |
WZS-75PMD-2S | 75 | 18.5m³/0.5MPa | DN65 | 70±3 | 2800 | 2800x1750x1900 |
WZS-90PMD-2S | 90 | 23m³/0.5MPa | DN65 | 72±3 | 2800 | 2800x1750x1900 |
WZS-110PMD-2S | 110 | 28m³/0.5MPa | DN80 | 72±3 | 3200 | 3200x1750x2250 |
WZS-132PMD-2S | 132 | 32.5m³/0.5MPa | D270N80 | 72±3 | 3500 | 3200x1750x2250 |
WZS-160PMD-2S | 160 | 41m³/0.5MPa | DN125 | 74±3 | 4100 | 3200x1750x2350 |
WZS-185PMD-2S | 185 | 45m³/0.5MPa | DN125 | 74±3 | 4500 | 3800x2150x2250 |
WZS-200PMD-2S | 200 | 50m³/0.5MPa | DN150 | 76±3 | 5100 | 3800x2150x2250 |
WZS-220PMD-2S | 220 | 54m³/0.5MPa | DN150 | 76±3 | 6200 | 3800x2250x2250 |
WZS-250PMD-2S | 250 | 61m³/0.5MPa | DN150 | 78±3 | 6600 | 4200x2250x2400 |
Choosing the Right Air Compressor For Your Home
You will find that air compressors are indispensable tools for a variety of situations, including garages, home workshops, and basements. These tools can power a variety of tools, and each model is sized to suit the job at hand. Because air compressors have only one motor, they are lightweight, compact, and easy to handle. Using one air compressor to power several tools will also reduce the wear and tear on individual components. This article will introduce some important characteristics to look for when choosing the right air compressor for your home.
Positive displacement
A positive displacement compressor applies pressure to a fluid, whereas a centrifugal one does the opposite. A positive displacement compressor creates the desired pressure by trapping air and increasing its volume. Its discharge valve releases the high-pressure gas. These compressors are used in industrial applications and nuclear power plants. The difference between a positive and negative displacement compressor is that a positive displacement compressor can compress and release air at a consistent rate.
A positive displacement air compressor uses a reciprocating piston to compress air. This reduces the volume of the air in the compression chamber, and a discharge valve opens when the pressure reaches the desired level. These compressors are used in bicycle pumps and other pneumatic tools. Positive displacement air compressors have multiple inlet ports and have several configurations. Positive displacement air compressors have a single-acting and double-acting piston, and can be oil-lubricated or oil-free.
A positive displacement air compressor is different from a dynamic compressor. It draws air into the compression chambers and then releases the pressure when the valve is opened. Positive displacement compressors are common in industrial applications and are available in single-acting, double-acting, and oil-lubricated models. Large piston compressors have ventilated intermediate pieces and crossheads on gudgeon pins. Smaller models have permanently sealed crankcases with bearings.
Oil-free
Oil-free air compressors have some advantages over their oil-lubricated counterparts. They do not require lubrication oil because they are coated with Teflon. The material has one of the lowest coefficients of friction and is layered, so it slides past other layers with little effort. Because of this, oil-free compressors tend to be cheaper and still deliver comparable performance. Oil-free compressors are a good choice for industrial applications.
The life of an oil-free air compressor is significantly longer than an oil-lubricated counterpart. These models can operate up to 2,000 hours, four times longer than the average oil-lubed compressor. Oil-free compressors also have a significantly lower operating noise than their oil-lubricated counterparts. And because they don’t need oil changes, they are quieter. Some even last up to 2,000 hours.
An oil-free air compressor is a good choice if your application requires high levels of purity. Several applications require ultra-pure air, and even a drop of oil can cause product spoilage or damage to production equipment. In addition to the health risks, an oil-free air compressor reduces the costs associated with oil contamination and minimizes leaks. It also eliminates the need for oil collection, disposal, and treatment.
A typical oil-free air compressor is very efficient, requiring only about 18% of the full load horsepower. However, oil-free compressors have a higher risk of premature failure and are not recommended for large-scale industrial applications. They may also use up to 18% of the compressor’s full capacity. They may sound appealing, but you must make sure you understand the benefits of an oil-free air compressor before choosing one for your industrial applications.
Single-stage
A single-stage air compressor is designed to provide the power for a single pneumatic tool or device. These machines are generally smaller than two-stage compressors and produce less heat and energy. These machines aren’t designed for heavy-duty industries, but they are still highly effective for a variety of applications, including auto shops, gas stations, and various manufacturing plants. They can also be used in borewells, as they are suitable for small spaces with low air flow requirements.
A single-stage air compressor has one cylinder and two valves – the inlet and the delivery valves. Both of these valves function mechanically, with the inlet valve controlling torque and the delivery one controlling air pressure. Generally, single-stage compressors are powered by a gas engine, but there are also electric models available. The single-stage air compressor is the most common type of air compressor. It has a single cylinder, one piston, and one air cylinder.
The single-stage air compressors are used for small projects or personal use. A two-stage air compressor is more effective for industrial projects. Its longer air end life makes it more efficient. It is also more efficient for use in the automotive industry, where the engine has many cylinders. In general, single-stage compressors require a higher power level. The single-stage model is ideal for small projects, while a two-stage one is suitable for larger-scale arsenals.
CFM
The cubic foot-per-minute (CFM) of an air compressor is the output of the machine. In order to calculate the CFM level, start by looking at the compressor’s specifications. You should know how many cubic feet the unit can hold and how many pounds per square inch it can compress. Once you have these information, you can calculate the CFM. Now you can use these numbers to select an appropriate air compressor for your needs.
The most common way to increase the CFM of an air compressor is to turn the regulator down. By turning the dial down, the air compressor will produce more than 10 CFM. You can also try connecting two output valves. Make sure that the settings are adjusted properly before you begin. This will ensure that your air compressor is functioning at its maximum efficiency and lifespan. To increase the CFM of your air compressor, first check that your regulator is calibrated for the desired pressure level.
To calculate the CFM of an air compressor, first determine the tank volume of the machine. Then, multiply this volume by the time it takes to fill the tank. Then, divide the result by 60 seconds to calculate the CFM. Once you know how much air your machine can hold, you can choose a suitable air compressor. If you’re working in a confined area, you should buy a tool with a large tank.
PSI
The PSI of an air compressor is the pressure that it can output. A typical air compressor has a gauge connected to the airline at the bottom, next to it, or between the two. The gauge tells the actual pressure of the air compressor, while the cut-out pressure is determined by the manufacturer. The manufacturer recommends that you set the cut-out pressure twenty to forty PSI higher than the factory recommended pressure. If you want to set the pressure for your nail gun, you can use the cut-in and cut-out pressures on your compressor, and the tank won’t exceed this range.
The PSI of an air compressor measures the force that it can deliver, which is often in pounds per square inch. For most air tools, you need at least forty to 90 psi. In general, reciprocating air compressors work on an on/off basis. This relationship is known as the duty cycle. All air compressors are rated for a particular duty cycle, such as fifty percent on and twenty-five percent off.
The Psig of an air compressor is not free, as many people believe. The PSI of an air compressor is not free, but it is essential to maintain it for safe operations. If you’re having trouble maintaining a consistent pressure, consider turning down the PSI of your compressor by 2 psig. This will determine the critical pressure for the machine. You’ll also increase the amount of energy in the system by one percent.
Power source
The power source for an air compressor is crucial in its operation. Without the correct voltage and amperage, air compressors will not function properly. The power source must be close to the compressor so that it can plug into an electrical outlet. If it is too far from the outlet, the compressor may not be able to build enough pressure. When this happens, the fuse inside the air compressor will turn off to protect the user. The power source should be a safe distance from the compressor.
Most manufacturers do not specify the power source for an air compressor. Depending on the horsepower, the compressor will require approximately four amps of power. A one-horsepower compressor would draw about twelve amps. If it were powered by a typical 120-volt household supply, its motor would exceed the 15-amp breaker capacity. A larger air compressor, however, will require a separate 15-amp power source, making it impossible to use it with this type of power source.
The power source for an air compressor is typically electrical alternating current (AC) that is equivalent to the voltage on a standard wall outlet. A three-phase air compressor, on the other hand, requires a special AC supply with three electrical offset pulses. Regardless of the type of air compressor, the power source must be compatible with the incoming power service. One of the most common problems when attempting to connect an air compressor to an AC power source is undersized wire. This results in low voltage and high amperes, tripping of over-load relays and blown fuses.
editor by czh 2022-12-19